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1. MULTIVARIATE CLASSIFICATION

In chapter “Exploratory analysis of metabolomic data”, by Stanimirova

and Daszykowski, attention was focused on the chemometric approaches for

the exploratory analysis [1] of multivariate data sets in the framework of

the -omic disciplines, i.e., on those techniques (mostly based on bilinear pro-

jections) which allow capturing the essential characteristics of the samples

under investigation, providing a sort of “snapshot” of the system by means

of highly informative plots. On the other hand, quite often experimental

data are collected with the aim of predicting the value of one or more

properties of the system (responses), which can be of quantitative or qual-

itative nature [2]. In particular, the case where the response to be predicted
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is qualitative, i.e., when it may assume only a discrete set of values (and there

is not necessarily an ordered relationship among them), is of particular rel-

evance in the -omic field, as many problems of interest can be formulated

in such terms, and it is the domain of application of classification methods

[3–6]. Indeed, a qualitative variable induces a categorization, according to

which each of the values it can take is said to be a class (or category): for

instance, if one is interested in investigating the metabolic effects of differ-

ent dosages of a drug onto a set of individuals, and the response (drug dose)

is studied at three levels (low, medium and high dose), this can be formu-

lated as classification problems involving three classes (each one identically

corresponding to a particular level of the qualitative response variable).

Another example could be the possibility of differentiating between healthy

and ill patients based on the collected experimental data: in such case, the

qualitative response to be predicted would be the health status of the indi-

viduals and its two discrete values (classes) “ill” and “healthy”, respectively.

Classification methods are chemometric tools building models aiming

at predicting which class (qualitative attribute) more accurately describes

the individuals under investigation based on the experimental data collected.

In mathematical terms, the statement above can be formulated as:

ci ¼ f xið Þ ci 2 1, 2,…,Cf g (1)

where xi is the vector of measurements collected on the ith sample, ci is the

predicted class for the same individual (which can be one of the C possible

values of the qualitative response) and f is a generic function relating the

experimental data to the predicted outcome. In Eq. (1), a generic numerical

coding for the values of the qualitative response was adopted, so that ci¼1

indicates one possible value of the response (class 1, e.g. “low dose”), ci¼2

another possible value of the response (class 2, e.g. “medium dose”) and so

on. Here it is important to stress that, in order to be able to define as accu-

rately as possible the functional relationship generally described by Eq. (1),

the possibility of building a predictive (classification) model relies on the

availability of a (representative) set of samples for which not only the exper-

imental data (xi) have been measured but also the corresponding “true” class

labels ci are known (training set).

1.1 Discriminant vs. Modelling Tools
Looking for classification methods in the literature, despite each of them has

its own characteristics, which make it peculiar and suitable for specific
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purposes, one could find herself/himself caught up into the several proposed

approaches in this field; a little taxonomy, providing similarities/differences

among the different methods, could address to themost suitable approach for

a given problem.

One first distinction, which could help to circumstantiate the number of

interesting approaches, is the one between discriminant and class-modelling

methods [5,7].

One typical feature which differentiates these two families of methods is

the fact that discriminant classifiers focus more on dissimilarities among

objects belonging to diverse categories, while class-modelling approaches

exploit interclass similarities in order to solve the classification problem.

Applying a discriminant method, the multivariate space of the samples is

divided into as many regions as the number of classes present in the system

under study. As a consequence of this, the application of this kind of clas-

sifiers provides unique class assignments, i.e., each sample is predicted as

belonging to one and only category. Considering a three-class problem

(for instance, categories A, B andC) the application of discriminant classifiers

leads to the case displayed in Fig. 1A. A discriminant method allows defining

three class boundaries which divide the multivariate sample space in as many

class regions: a sample will be classified according to the class region it falls

into. In the example represented in Fig. 1A, the space is divided into three class

regions: a sample falling into the region of categoryA (red squares)will be con-

sidered as belonging to this class, one present into the space of class B (green

diamonds) will be assigned to this category while one falling into class region

C (blue circles) will be predicted as belonging to the C class.

Conversely, as mentioned above, using class-modelling classifiers, the def-

inition of class boundaries is based on similarities among intercategory sam-

ples, and each class region is defined independently from the others [8].

Briefly, applying a class-modelling method means defining, per each class

in the system (or per a specific class of interest), the region in the multivar-

iate sample space, where an object belonging to that specific category is the

most likely expected to fall. As a consequence of this, different from the

discriminant analysis, the multivariate space of samples is not completely

divided into class regions, but they only partially cover it. Moreover, since

each class boundary is individually defined, they can overlap, leading to

regions where sample belonging to different categories could fall into. More

specifically, taking once again into account a three-class case, the applica-

tion of class-modelling methods leads to three different scenarios (displayed

in Fig. 1B). In fact, a sample could fall into a class region, and it is therefore
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assigned to that category (for instance, objects represented as green dia-

monds in Fig. 1B, assigned to class B); otherwise, it could be accepted

by more than one class model (falling in an overlapping regions between

two categories, like some objects represented as red squares or blue dots

in Fig. 1B, which are accepted by both class A or class C models) meaning

it has the same probability of belonging to all of them (and it is called confused

sample). Finally, an object could be rejected by all the models (falling outside

any class region), and it is therefore not assigned to any category.

1.2 Discriminant Methods
As explained above, discriminant methods operate a “strict” classification by

associating with each of the samples under investigation one and only one of

the possible values of the qualitative response variable, i.e., assigning each to

one and only one of the available classes. Considering the geometric inter-

pretation discussed in Section 1.1, they operate by identifying multivariate

surfaces (decision boundaries) which partition the variable hyperspace into as

many regions as the number of categories, so that there is a one-to-one cor-

respondence between the coordinates of the samples (xi) and their predicted

class. These decision surfaces are calculated in a way as to minimize some sort
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Fig. 1 Illustration of discriminant (A) and modelling (B) classification approaches.
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of error criterion for the training samples, the most common of which is the

overall classification error ETOT defined as:

ETOT ¼
XNTOT

i¼1
ei

NTOT

(2)

where NTOT is the total number of training samples, and ei represents the

error on the prediction of the ith sample

ei ¼ 0 if bc i¼ ci
1 if bc i 6¼ ci

�
(3)

bc and ci being the predicted and the true value of the class label for that indi-
vidual, respectively. The criterion in Eq. (2) assumes that all the classifica-

tion errors are equally costly, i.e., misclassifying an individual from class1

by predicting it as class2 is as bad as wrongly assigning a sample from class2

to class1. However, this assumption is not always true, especially in bio-

medical applications, where, for instance, the consequences of wrongly

predicting that a person is ill when instead he/she is healthy (false positive)

are less severe than those of wrongly predicting that a person is healthy

when, in reality, he/she is ill (false negative). In such cases, the decision

boundaries can be calculated in a way as to minimize a loss function which,

together with the classification errors, also includes the misclassification costs

and, in the case where only two classes are present, takes the form

E∗¼ l21E21 + l12E12 ¼ l21

XN1

j¼1
ej

N1

+ l12

XN2

k¼1
ek

N2

(4)

where l21 and l12 are the cost of wrongly predicting as class 2 a sample from

class 1 and vice versa, respectively, while E21 and E12 are the percentage of

class 1 samples and class 2 samples wrongly predicted, respectively [9]. The

impact of the introduction of a classification cost into the error criterion is

graphically shown in Fig. 2 for the two-class case. In particular, let us assume

that the aim is to build a classification model which, on the basis of the mea-

sured variables (here, only two, for the sake of graphical simplicity), allows

predicting whether an individual is healthy or ill. When assuming that all the

classification errors are equally costly (Fig. 2A), the decision boundary is

placed so that there is an equal probability of false positives and false nega-

tives. On the other hand, when introducing a higher misclassification cost
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for false negatives (Fig. 2B), the decision boundary is moved closer to the

healthy samples and allows a higher rate of false positives.

In general, building a classification model involves the definition of the

boundaries which separate the regions associated with the different catego-

ries in the multivariate space or, in other words, the formulation of a clas-

sification rule which is nothing else than the functional relationship

described in Eq. (1), relating the experimental data to the predicted class

label. In particular, when the error criterion to be minimized is the one

in Eq. (2), assuming equal misclassification costs for all the categories, the

classification rule underlying all discriminant approaches is the so-called

Bayes’ rule, which states that a sample should be assigned to the class it

has the highest probability of belonging to [10]. Accordingly, Bayes’ rule

represents the probabilistic core of all the discriminant classification

Fig. 2 Illustration of the effect of the cost of misclassification on the decision threshold
for a general linear classifier in a two-class problem. As an example, the case of discrim-
ination between healthy (red circles) and ill (blue squares) individuals is considered.
(A) Decision threshold is based only on minimum classification error: number of false
positives (4) is almost equal to the number of false negatives (3). (B) Decision threshold
takes into account the cost of misclassification: there are no false negatives, but the
number of false positives increases significantly (11).
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approaches, even if not all the available methods rely on it for the actual

calculation of the optimal model parameters. The probability that a sample

belongs to the gth category estimated based on the measurements (posterior)

p(ci¼ g jxi) is defined as:

p ci ¼ gjxið Þ∝p xijci¼ gð Þωg (5)

where p(xi j ci¼ g) is the probability of observing the vector xi from samples

truly coming from class g (likelihood) andωg is the a priori (i.e. before taking

any measurement) probability of observing an individual from that class; the

proportionality sign indicates that a normalization constant (necessary for the

probabilities to sum up to one) is not considered in the equation. Building

classification models according to the Bayes’ rule, then, involves calculating

the probability that a sample belongs to each of theC investigated categories:

p ci¼ 1jxið Þ,p ci¼ 2jxið Þ,…,p ci¼Cjxið Þ (6)

and assigning the individual to the class corresponding to the highest value of

the posterior probability. On the other hand, not all the discriminant

approaches make explicit use of Bayes’ rule (even if it still remains underly-

ing) to calculate the decision boundaries, as the classification rule can be

more straightforwardly expressed in other terms (e.g. based on distances).

In the remainder of this section, the discriminant methods most commonly

used in the context of -omic applications will be illustrated and discussed.

1.2.1 Linear Discriminant Analysis
Linear discriminant analysis (LDA) initially proposed by Fisher in 1936 was

the first and it is still one of the most commonly used classification method

in the literature [11]. As the name suggests, it is a linear technique, meaning

that these decision boundaries separating the regions of the variable hyper-

space associated to the different categories are linear surfaces (i.e. hyperplanes),

whose calculation directly follows from Bayes’ rule, as LDA is a probabilistic

(parametric) method. In particular, LDA assumes that, for each category, the

likelihood in Eq. (5) follows a multivariate normal distribution, whose

variance–covariance matrix S is the same for all the classes:

p xijci ¼ gð Þ¼ 1

2πð Þv2 Sj j
e�

1
2

xi�xgð ÞTS�1 xi�xgð Þ (7)

where xg is the barycentre (centroid) of the gth category and v is the

number of measured variable (i.e. the dimensionality of the hyperspace).
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By substituting Eq. (7) into Eq. (5), one obtains that the posterior proba-

bility that a sample belongs to the gth category, under the assumptions of

LDA, becomes:

p ci ¼ gjxið Þ¼ ωg

Knorm 2πð Þv2 Sj j
e�

1
2

xi�xgð ÞTS�1 xi�xgð Þ (8)

where the normalization constant Knorm is the same for all the classes.

Since, according to Bayes’ rule, a sample should be assigned to the class

it has the highest posterior probability of belonging to, in a probabilistic

technique such as LDA, the decision boundaries, separating the portions

of the multivariate hyperspace, associated to the different categories, are

characterized by being the surfaces where:

p ci¼ jjxið Þ¼ p ci ¼ kjxið Þ 8j,k (9)

i.e., there is an equal probability for an individual to belong to each of the

classes on the two sides of the delimiter. When inserting Eq. (8) into (9) and

taking the logarithm of both sides of the equality, after cancelling out all the

terms which are the same for both categories one obtains:

xj
TS�1x�1

2
xj

TS�1xj + ln ωj

� �¼ xk
TS�1x�1

2
xk

TS�1xk + ln ωkð Þ (10)

which is the equation of a linear surface (i.e. a hyperplane):

wTx�w0 ¼ 0 (11)

where

wT ¼ xj�xk
� �T

S�1 (12)

and

w0¼ 1

2
xj

TS�1xj2
1

2
xk

TS�1xk� ln
ωj

ωk

� �
: (13)

An example of a linear decision boundary (hyperplane) calculated

by LDA for a problem involving two classes in three dimensions is graph-

ically shown in Fig. 3.

Since it explicitly assumes a specific probability distribution function

(in particular, the multivariate Gaussian), LDA is said to be a parametric

method: calculation of the model parameters, i.e., the coefficients w and

w0 identifying the decision boundaries, just requires the estimation of the
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parameters characterizing the probability density functions (the centroids

xj and xk, and the variance–covariance matrix S) plus the priors (ωj andωk).

This may represent an advantage in terms of model building as, once the

training data are collected, the calculation of the model parameters is

straightforward, and no model selection phase is needed. On the other

hand, due to the need of inverting the variance/covariance matrix S,

the training set should contain a higher number of samples than variables,

and the latter should be as uncorrelated as possible. Unfortunately, these

conditions are rarely met in the data sets normally resulting from omic

studies, and therefore LDA can only seldom be directly applied to those

kinds of problems. Accordingly, one could think of improving the samples

to variables ratio by operating a preliminary variable (or feature) selection stage

(see Section 3) or use alternative classification techniques which are insen-

sitive to ill-conditioned matrices (e.g. partial least squares-discriminant

analysis (PLS-DA), see Section 1.2.2).

1.2.2 Partial Least Squares-Discriminant Analysis
As already highlighted at the end of the previous section, most of the exper-

iments in the omic field (especially in the case of untargeted studies) involve

the use of high-throughput instrumental fingerprinting platforms on a (usu-

ally) limited number of samples. From a data analytical standpoint, this trans-

lates to the fact that the corresponding data matrices, containing very

correlated descriptors whose number is often much higher than that of

Fig. 3 Illustration of a linear decision boundary (hyperplane in violet) for a problem
involving two classes (red circles and blue squares) in three dimensions.
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the analysed specimens, are ill-conditioned and cannot be processed with

traditional statistical methods such as LDA. In contrast, the possibility of

extending the concept of bilinear projection, which is one of the pillars

of chemometrics, to multivariate classification, by overcoming the limita-

tions discussed above (since the samples are described by a low-dimensional

set of orthogonal components) resulted in algorithms, such as PLS-DA,

which are becoming more and more utilized in the omic disciplines.

PLS-DA [12–14] was originally proposed to extend the advantages of

partial least squares regression (PLS-R) [15,16], a calibration technique

based on the partial least squares algorithm [17], to discriminant classification

problems. Therefore, in order to understand how PLS-DA works, it is first

necessary to illustrate the original regression algorithm.

PLS-R is a multivariate linear regression technique, whose aim is, there-

fore, to find the best (linear) relationship between a set of predictors (the

vector x) and one or more responses (the scalar y or the vector y, respectively):

y¼ xb single response

y¼ xB multiple responses

�
(14)

the vector b or the matrix B (depending on the case) collecting the pro-

portionality (regression) coefficients. Regression coefficients are the model

parameters and are calculated from a set of samples (the training set) for

which the values of both the predictors and the response(s) are known

(and organized in the matrices X and Y, respectively). For those samples,

the regression model can be formulated in matrix form as:

Y ¼XB+EY ¼ bY +EY (15)

where

bY ¼XB (16)

is the matrix collecting the responses predicted by the model, while EY

contains the residuals (i.e. the unmodelled variation in Y). In this frame-

work, since classical regression approaches, such as multiple linear regres-

sion, which calculates the values of the coefficients B according to the

ordinary least squares approach (i.e. by minimizing the Frobenius’ norm

of EY), suffer from the same limitations as LDA, when the predictor matrix

contains more variables than samples and/or the variables are correlated,

PLS-R was introduced as a technique able to deal with the cases where X

is ill-conditioned.
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Indeed, PLS-R operates by projecting both the X and the Y

matrix onto a reduced (low-dimensional) common set of latent variables

(components)

T ¼XR (17)

U ¼YQ (18)

which are oriented in a way as to provide the maximum covariance between

the corresponding scores for the two blocks:

argmaxri,qi cov ti, uið Þð Þ: (19)

In Eqs. (17)–(19), T and U are the score matrices for the X and the Y

blocks, respectively, R are the X weights and Q the Y loadings; ti, ui, ri
and qi are the ith columns of the corresponding matrices, i.e., the X and

Y scores, theXweights and the Y loadings for the ith latent variable, respec-

tively. The linear dependence between the X and the Y blocks is achieved

by imposing U to be linearly proportional to T component-wise (inner

relation):

ui¼ tici¼)U ¼TC (20)

ci being the inner regression coefficients, collected in the diagonal matrix C.

By combining Eqs. (18) and (20), it is possible to explicitly express the

predicted responses in terms of the scores:

bY ¼TCQT (21)

so that, by further incorporating Eq. (17), one obtains:

bY ¼XRCQT ¼XBPLS (22)

where the PLS regression coefficients BPLS are defined as:

BPLS ¼RCQT : (23)

The use of few orthogonal components (the scores T) as regressors for

the responses allows overcoming all the limitations related to the matrix

X being ill-conditioned and allows to calculate reliable estimates of the

model parameters. Moreover, Eq. (22) shows that the model can still be

expressed in terms of the original (measured) variables through the set of

regression coefficients BPLS, not only making interpretation more straight-

forward but also allowing to more easily formulate predictions on new
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samples. Indeed, whenever a new sample is analysed, obtaining the exper-

imental vector xnew, the predicted responses bynew can be obtained directly as:

bynew ¼ xnewBPLS: (24)

In order to be able to use the PLS-Rmethod for calculating classification

models, it is necessary to code class information (qualitative response) into a

numerical Y matrix. This is accomplished by building the Y for the training

samples so to have as many columns as the number of classes and introducing

the following binary coding: for each sample, the corresponding row of the

Y matrix contains all zeros, except for the column corresponding to its

category where there is a one. For example, in a problem involving three

classes, all the rows of the Y matrix corresponding to samples from the first

class will be identically equal to:

yclass1¼ 1 0 0½ �, (25)

those corresponding to individuals from the second class to:

yclass2¼ 0 1 0½ �, (26)

and the ones associated with the third category, to:

yclass3¼ 0 0 1½ �: (27)

The dummy coding of class information into the binary matrix Y allows

the PLS-R algorithm to be used as the basis for calculating discriminant

classification models, giving rise to the technique called partial least

squares-discriminant analysis. Indeed, the starting point of PLS-DA is the

possibility of calculating a PLS regression model between the experimental

data X and the binary-coded matrix Y and, in particular, of obtaining, for

each sample, a vector of predicted responses by, as described in Eq. (24).

However, since PLS regression is a calibration method and, therefore, it

produces quantitative outcomes, the predicted responses by will not be

binary coded as well but, instead, real-valued. So, the second, and funda-

mental, step which characterizes PLS-DA is the definition of a classifi-

cation rule which allows formulating predictions about the category the

samples belong to, based on the values of by. In this respect, during the

years, different variants of PLS-DA have been proposed in the literature,

differing from one another on the way this last step was accomplished. In

particular, the most naive approach operates classification by assigning each

sample to the category corresponding to the highest value of the predicted
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response. For example, in a problem involving four classes, if the response

predicted for a particular sample were:

by¼ 0:03 �0:12 0:85 0:19½ � (28)

that individual would be assigned to the third class. On the other hand, alter-

native approaches involve the calculation of an LDA model on bY .

Here it is worth mentioning that, when the problem involves only two

categories, the dummymatrix Y can be substituted, without loss of informa-

tion, by a single-column dummy vector y, assuming the value 1 for all the

individuals from class 1 and 0 for all the samples from the second class. In

such cases, the classification process corresponds to setting a threshold of

ϑy to the value of the predicted response, so that if by> ϑy the sample will

be assigned to the first class, whereas if by< ϑy, it will be assigned to the second
category. Accordingly, in the most naive approach, the threshold is usually

fixed to 0.5, but different values can be obtained if alternative classification

schemes are adopted. This situation is graphically illustrated in Fig. 4.

Since PLS-DA requires a projection onto a low-dimensional space of

components, different than in the case of LDA, a model selection stage,

Fig. 4 Illustration of naive PLS-DA classification based on predicted Y for a problem
involving two categories (red circles and blue squares). The black dashed line represents
the classification threshold (ŷ¼ 0:5): samples falling above the line are assigned to the
red class, while samples falling below are assigned to the blue one.
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where the optimal number of latent variables is estimated, is needed. This

is generally accomplished by choosing the model dimensionality which cor-

responds to the minimum classification error (defined as in Eq. 2), usually

in cross-validation (see Section 4).

1.2.3 Other PLS-DA-Based Methods
Since PLS-DA (as its analog PLS-R) has the advantage of being applicable

to all sorts of problems, even those involving matrices with a very high

number of variables measured onto a very limited number of samples (highly

ill-conditioned problems), at the same time providing a straightforward

interpretation of the results, various modifications have been proposed in

the literature in order to exploit the capabilities of the technique for specific

purposes.

In this context, a technique that is largely used in the -omic field is

orthogonal partial least squares-discriminant analysis (OPLS-DA) [18],

which actively uses the information in theY block to partition the systematic

variation in X in two contributions which are related and orthogonal to the

responses, respectively. In particular, the categorical information contained

in Y is used to partition X into three contributions:

X¼TPP
T
P +TOP

T
O +EX (29)

where TP and PP are the scores and loadings accounting for the predictive

(i.e. correlated to Y) part of the variation inX, TO and PO are the scores and

loadings for the orthogonal (to Y) systematic variation in X and EX collects

the residuals (i.e. the portion of the variability inX not accounted for by the

bilinear model). In OPLS-DA, the predicted responses bY are calculated only

using the predictive scores TP, which can also be plotted to have a graphical

idea of the separation between the classes. However, in order to further

exploit the partition of the variability in X summarized by Eq. (29), it

was proposed to include also a criterion based on the orthogonal variation

to fine-tune the predictions of OPLS-DA (in this way, resembling class-

modelling techniques, see Section 3).

On the other hand, kernel PLS-DA [19,20] was proposed as a valid

approach to deal with problems where the decision boundaries could

not be assumed to be linear anymore. This is because it is possible to express

various algorithms, including PLS, in terms of inner products in specific

function spaces (kernels). In particular, it is possible to calculate a PLS
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(and, consequently, PLS-DA) model in terms of the inner product matrix

KX (linear kernel)

KX ¼XXT (30)

instead of X.

When a problem is not linearly separable, one possibility would be to

extend the dimensionality of the variable space by some nonlinear trans-

formation ϕ of the original data:

ξ¼ϕ xð Þ (31)

ξ being the coordinates of a generic sample in the transformed space. If the

transformation ϕ is chosen properly, the data should be linearly separable in

this new space; however, it is generally not very easy to know a priori which

transformation should be applied to the data for a specific purpose. Luckily,

due to what is called the “kernel trick”, in general, the knowledge of the

explicit mapping ϕ is not needed in order to operate nonlinear modelling.

Indeed, as explained above, many algorithms can be expressed directly in

terms of kernel matrices so, by testing a limited number of general purpose

nonlinear kernels (the most commonly used being the polynomial or the

radial basis functions), it is possible to implement various degrees of non-

linearity in different linear algorithms as, in particular, PLS-DA.

On the other hand, since the model is calculated using square matrices

which carry only the information about similarities or dissimilarities among

samples, information about the experimental variable is lost, and interpreta-

tion may be less straightforward than with the standard PLS-DA algorithm.

Indeed, in order to obtain information about the contribution of the differ-

ent experimental variables to the kernel PLS-DA model, an approach based

on pseudo-samples has been proposed in the literature [21].

1.3 SIMCA and Class Modelling
Although there are only a few examples of the use of class-modelling tech-

niques in the context of -omic disciplines, still it is worth to describe their

main characteristics and, in particular, the technique which is most fre-

quently used in this context, which is soft independent modelling of class

analogies (SIMCA). As already explained in Section 1.1, class-modelling

techniques aim at defining a (usually) bound region in the multivariate

space where it is likely to find individuals from a particular category.

Since the model of a particular class is built from a training set made only
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of individuals from that category, the definition of the class boundary relies

on the identification of the salient features of the samples from that group

and resembles outlier detection techniques.

SIMCA was the first, and it is still the most widely used class-modelling

technique in chemometrics [22,23]. It assumes that the salient features which

characterize the samples for a particular class (systematic variation) can be

captured by a principal component model of appropriate dimensionality:

Xg ¼T gP
T
g +Eg (32)

where Tg, Pg and Eg are the scores, loadings and residuals, while the suffix g

indicates that the model is built only using samples from the gth category.

Once the model has been built, a distance to the model is calculated as

the combination of a contribution which takes into account the distance

of a sample to the centre of the scores space (scores distance SDg) and the

residuals (orthogonal distance ODg):

dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

g +OD2
g

q
: (33)

The scores distance is often defined through the use of the T2 statistics

[24], which represents the Mahalanobis distance of the sample to the centre

of the PC space:

T2
i,g ¼

XF

j¼1

t2ij,g

λj,g
(34)

where tij,g is the score of the ith samples on the jth component of the PCA

model of class g, λj,g is the eigenvalue (variance) of the jth component of

the PCA model of class g and F is the dimensionality of the PCA subspace.

On the other hand, the orthogonal distance is usually calculated, for each

individual, as the sum of its squared residuals (Q statistics) [25]:

Qi,g ¼
Xv

j¼1
e2ij,g (35)

where eij,g is the jth component of the residual vector of the ith sample for the

PCA model of class g, while v is the total number of measured variables.

Accordingly, the distance of a sample to the model of a particular category

(here, generically indicated as g) is usually defined as:

dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
red,g

� 	2
+Q2

red,g

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
g

T 2
g,0:95

 !2

+
Qg

Qg,0:95

� �2

vuut (36)
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where the suffix red indicates that, in order to make the two contributions,

which are defined in different subspaces, comparable, both statistics should

be normalized by their critical values (95th percentiles of their distributions

under the null hypothesis: Tg,0.95
2 and Qg,0.95, respectively).

Accordingly, the class boundary is identified by setting a threshold to the

acceptable values of the distance to the model defined in Eq. (36), so that

samples having a distance lower than the threshold are accepted, and all

the others are rejected. Due to the normalization adopted in Eq. (36), usually

the threshold value for acceptance is set to
ffiffiffi
2

p
. This acceptance criterion is

graphically illustrated in Fig. 5.

2. DATA FUSION

In omic sciences, it is quite common to have different sets of measure-

ments collected on the same samples; for instance, in genomics, it could be

very likely to have amplified fragment length polymorphism data together

with spectroscopic measurements and/or characterization of the phenotype.

When information coming from different platforms is available for the entire

set of samples, the data set is a so-called multiblock data set.

Fig. 5 Illustration of SIMCA model space onto a Tred
2 vs. Qred plot. The black dashed line

indicates the acceptance threshold d¼ ffiffiffi
2

p
: samples falling below the line are accepted

by the class model while those falling above are rejected.
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Independently from the nature of the multitab data, it is quite established

that it is preferable to handle multiblock data sets with methods conceived

for it, i.e., by data fusion techniques. In fact, it has been demonstrated that it

can be more efficient to jointly extract information from the different blocks

rather than creating individual models on each of them [26,27].

The multiblock field has been quite widely investigated in the last years,

and several approaches have been proposed in the literature. One main dis-

tinction among all the different methods could be given taking into account

at what level data are fused together. With respect to this, they can be

divided into three categories: low-, mid- and high-level data fusion tech-

niques [28]. Applying a low-level data fusion approach, the original data

are concatenated together, and the resulting matrix is modelled (Fig. 6A).

For instance, taking into account a three-block data set (X1(N�V1)
,X2(N�V2)

and X3(N�V3)
), in order to apply a low-level approach, these will be row-

wise concatenated, obtaining a final data matrix XConc¼ [X1X2X3] of

dimensions N� (V1+V2+V3).

The main advantage of this class of methods is that, once the final matrix

is obtained, all the classical chemometric approaches, unless for other con-

straints, can be applied. On the other hand, one of the main drawbacks of

low-level data fusion strategies is that they lead to quite large data matrices,

difficult to handle, in particular by methods which require invertibility (for

instance, LDA).

Mid-level data fusion is a good solution when a multiblock method

approach is required, but it is also necessary to reduce the number of features.

In fact, applying a method from this family of techniques, the concatenation

is not among original variables but latent ones (Fig. 6B). Latent variables

(such as scores or principal component) can be extracted by applying what-

ever method conceived for this purpose (e.g. PLS or PCA). Taking once

again into account the three-block data set case, and assuming that a set

Low-level data fusion

X1(N´V1) XW(N´VW)
T1(N´LV1) TW(N´LVW)

Original variables

A B

Latent variables

Mid-level data fusion

Fig. 6 Schematic illustration of low-level (A) and mid-level (B) data fusion.
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of latent variables has been extracted from each of these blocks (T1(N�LV1)
,

T2(N�LV2)
andT3(N�LV3)

), the resulting matrix is obtained by row-wise con-

catenation of features from each data block TConc¼ [T1T2T3] and its dimen-

sions will be N� (LV1+LV2+LV3).

Obviously, a mid-level data fusion approach is slightly more computa-

tionally challenging than a low-level data fusion one, since, in order to

obtain the final matrix TConc, a number of models equal to the number of

blocks available are required. Anyhow, in general, it is worth to apply these

approaches because, due to the features reduction step, part of the non-

informative variance is removed from the blocks, and, as a consequence,

when these methods are used for regression or classification, often they pro-

vide better results (in terms of predictions) than low-level data fusion

strategies.

Finally, high-level data fusion techniques combine predictions from

other models in order to obtain further and, hopefully, more accurate esti-

mations; for instance, Bayesian approaches belong to this family of tech-

niques. The application of these methods in the omic field is not very

common; consequently, their relevance in this context is quite limited.

Independently from the level the concatenation among blocks takes

place, it is possible to distinguish the different data fusion approaches also

considering their final aim. In fact, they can be applied in diverse fields, such

as the exploratory analysis, regression or classification. In the first case, they

are focused on solving multiblock component problems: the most widely

applied methods in this context are CPCA [29], DISCO [30], JIVE [31]

and ComDim [32]. For more details, the reader is addressed to the literature.

For what concerns regression or classification methods, several multi-

block methods have been developed to solve these kinds of problems, such

as multiblock-PLS (MB-PLS) [26,27,33–35], hierarchical PLS [36], sequen-
tial and orthogonalized partial least squares (SO-PLS) [37,38] and On-PLS

[39] just to mention few of them.

3. VARIABLE/FEATURE SELECTION

The need of assessing which are the most relevant variables in model

building can be motivated by different purposes: (i) increase the understand-

ing of the underlying process that generated the data (enhance interpreta-

tion); (ii) improve the performance of the model (increase prediction/

classification rate); (iii) reduce the noise generated by irrelevant features

283Classification and Variable Selection



and (iv) to select variables in order to reduce measurement effort or to design

tailored instrumental devices.

This explains why there is an ever-growing proposal of variable/feature

selection methods in the literature [40–42]. Providing a comprehensive

review of them is beyond the scope of this chapter; our aim, instead, is to

frame the different approaches, describing the few per each category which

are more diffuse in omic research fields.

In the omic context, feature selection is closely linked to putative bio-

marker assessment, i.e., finding the molecular markers (e.g. genes, proteins,

metabolites) that are most relevant in discriminating among control/disease

or treated/untreated samples in terms of their relative expression/concentra-

tion. In this respect, there is a quite high risk of spurious finding. In fact, it is

often underestimated that the excessive false discovery rate due to multiple

hypothesis testing (when univariate pruning of features is applied) or the

inherent overfitting arises in the absence of adequate validation. Moreover,

given the high dimensionality and high degree of correlation present in omic

data sets both issues of missing part of the relevant features and of retaining

part of the not relevant one can be present.

In the following section, we will only discuss multivariate feature selec-

tion methods in the framework of the chemometrics methods illustrated in

the previous sections. Table 1 organizes feature selection methods with

respect to the category they belong to, and classifiers to which are associated.

An established taxonomy for variable selection allocates the methods in

three main groups [40]:

(1) filter methods: these evaluate the variable performance on the basis of

some inherent property after model building and generally are

implemented by defining a ranking criterion and applying a threshold.

Among these most used in omic applications are variable importance in

projection (VIP) and selectivity ratio (SR) for PLS-DA based classifica-

tion and the modelling power in SIMCA class modelling;

(2) wrapper methods: in this case feature selection is accomplished itera-

tively. A search algorithm is used to span the features space, and distinct

models are built for each subset of variables. A measure of model per-

formance is then used to assess the best subset of variables. A further

distinction can be done on the basis of the search algorithm being

deterministic, e.g., based on successive elimination loops such as uni-

nformative variable elimination in PLS (UVE-PLS), interval PLS (iPLS)

or random, e.g., genetic algorithm (GA);
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(3) embedded methods, where the variable selection is integrated in model

derivation. This is a one-step procedure, i.e., at variance with wrapper

methods model refitting is not required, and the best subset of variables

is assessed simultaneously to model derivation. Typical of this category

are methods based on the introduction of sparsity [43–45], e.g., in
weight vectors, regression coefficients (PLS), loadings (PCA) or canon-

ical vector (LDA).

Each category has different implications from the point of view of validation,

computational costs and purposes pursued by feature selection. Filter

methods, being independent of the modelling step, do not require additional

validation nor increase the adjustable model parameters, e.g., in PLS (PLS-

DA) the estimation of the variables ranking according to VIP or SR will be

disjoint from the assessment of the number of components; this will also

mean that no additional computational cost is introduced. These methods

may be more advantageous when the objective is model interpretation as

they also provide a variable ranking and more criteria can be used, as it will

be discussed further. Wrapped methods are the most computationally inten-

sive because a search in the space of candidate variables subsets has to be

Table 1 Conceptual Organization of Variable Selection Methods
Method Classifier

Filter VIP PLS-DA

SR PLS-DA

Discriminant power SIMCA

Regression coefficients, weights PLS-DA

Loadings, canonical vectors PCA-LDA, LDA

Wrapper UVE PLS-DA

GA PLS-DA, LDA, SVM, ANN,

etc.

Interval based (iPLS, iECVA) PLS-DA, ECVA

Embedded Sparsity in regression coefficients,

weights

PLS-DA, SVM

Sparsity in loadings PCA-LDA

Sparsity in Mahalanobis distance LDA, SHM
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accomplished, and also a more intensive validation scheme is required, e.g.,

double cross-validation (DCV); they may be very efficient to obtain a par-

simonious model with improved performance, but on the other hand, their

application becomes critical with a limited number of samples. Wrapper

methods can also be suboptimal when there is an interest in maintaining

redundancy. As an example, in proteomic studies, often the aim is identify-

ing all proteins whose expression rate change because of a disease status even

if for prediction purposes only a subset may be sufficient. Embedded

methods may achieve a good trade-off between computational costs and

performance since they do not require model refitting. However, to control

the degree of sparsity an additional parameter has to be tuned; mostly this is

done by cross-validation. As for model interpretation, it has to be taken into

account that depending on the way sparsity is implemented correlated

(redundant) variables may be altogether selected or only some of them,

arbitrarily.

A further approach to feature selection is to apply one of the approaches

mentioned above after data transformation, e.g., in the wavelet domain

[46–48].
Recently [49], in connection with classifiers such as random forest or

SVM, it is emerging the use of an ensemble of feature selection criteria,

mainly for the binary classification context, which are generally based on

information criteria, e.g., mutual information, Bayesian information crite-

rion (BIC) or Akaike’s information criterion (AIC). The majority vote is

then used as a criterion to fuse decision from the different feature selection

methods. In conjunction with the evaluation of classification performance,

by using resampling methods, the stability and similarity of the selected fea-

ture subsets can also be taken into account.

In the following section, the most diffuse methods for each category will

be detailed.

3.1 Filter Method
3.1.1 VIP, SR (PLS-DA Classifier)
VIP scores are defined for eachX variable, j, as the sum, over latent variables

(LV), of its PLS-weight value (wj) weighted by the percentage of explained

Y variance (SSY) by each specific LV, according to the formula [50,51]:

VIP2j ¼
X

f
w2
jf SSYf J= SSYtot:expl:F

� �
(37)
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where F is the number of latent variables of the PLS model and J the number

of X variables.

In the case of multivariate Y a single VIP value, referring to the overall

model, can be calculated if SSY refers, as above, to the percentage of

explained variance for the whole Y block; otherwise a VIP value for each

Y variable, k, can be calculated, as it is usually done in PLS-DA application,

by using SSykf and SSyk, tot.expl in (37), where k refers to a specificY variable.

In the case of a single response, y (I �1), the following equalities also

hold [52]:

SSYf ¼ b2ff t
T
f tf SSYtot:expl ¼b2TTT (38)

where T is the X scores matrix and b the PLS inner relation coefficients.

The VIP formulation as originally proposed [50] is a parameter varying in

a fixed range since the sum of squared VIP for all variables sum to the num-

ber of variables. This explains why it is common to assume as a threshold a

VIP value larger than 1 (i.e. larger than the average of squared VIP values),

which means that a selected variable will have an above average influence on

the model explaining Y. This criterion is very reasonable to discard irrele-

vant variables, while it may have drawbacks if used for assessing the signif-

icance of features; alternative threshold values include increasing the

threshold to 2/3 or considering the average of VIP values as a threshold.

Other criteria have been proposed to verify that the variables have a sig-

nificantly higher than 1 VIP value, i.e., using jack-knifed confidence intervals

or resampling methods such as bootstrap [53,54]. A modification of the boot-

strap, which is coupling it with a random permutation of each variable in turn,

as to obtain simultaneously a threshold and a significance criterion, has been

proposed in Ref. [53]. Obviously, this comes at a computational price.

Selectivity ratio (SR) [55–58] has been introduced to assess the relevance
of variable in a PLS (PLS-DA)model considering onlyY-related variation; it

is defined, for each variable, j, as the ratio of the explained variance for that

variable on the target component (TP) and its residual variance:

SRj ¼ var XTP, j

� �
=var XO, j + ej

� �
(39)

whereXTP is referred to the systematic variation inX correlated withY,Xo

to the systematic variation but orthogonal to Y and e to the X residual

variation.
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XTP is estimated by the target component (i.e. the y-related or predictive

component of the PLS model), which is obtained by:

tTP¼XwTP wTP ¼b=kbk (40)

pTP ¼XTtTP= tTTPtTP
� �

(41)

XTP¼ tTPp
T
TP (42)

where b is the vector of PLS regression coefficients for the given y variable.

As for VIP different criteria have been proposed to define a significance

threshold for SR, such as using an F-test (since it is a variance ratio) [56],

using the mean over all variables [59] and using bootstrap [60].

According to the proposing author, SR should overcome the problem of

missing explanatory variables with small variance but relevant to predict

Y and ease interpretation because of focus only on Y-related information.

SR and VIP have been compared in several studies [59,61–63] and the

obtained results depend indeed on the type of data set. Common conclusions

to Refs [59,61], where a wide systematic simulation study by DoE on the

level of relevant/irrelevant systematic variation and the noise was also con-

ducted, are that both are effective in skipping the variables showing system-

atic variation but irrelevant to Y-prediction and avoiding selection of noise

variables.

VIP may tend to select more “false positive” (variables not causally

related to Y) and SR is affected by more false negative (it may miss some

relevant variables; in particular with spectral data when these are non-

selective for the calibrated analyte). However, it has to be remembered that

the total number of selected features depends on how the threshold value is

set. In particular, using the F-test as the criterion for SR tends to be too con-

servative (few variables selected) while other criteria are not; on the other

hand, for VIP the threshold value of 1 (which tends to select quite many

variables) may be increased taking into account, e.g., that in a spectrum sev-

eral variables define a band [51].

Further considerations concern interpretation, as neither VIP nor SR

alone are sufficient to interpret the contribution of ranked/selected features;

to this aim, the sign of regression coefficients and target loadings, respec-

tively, has, for instance, to be taken into account [57].

3.1.2 Modelling Power (SIMCA Classifier)
In SIMCA, the most salient features for discriminating the samples with

respect to the modelled classes can be identified by calculating the variable
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discriminatory power, DPow [23]. Dpow is calculated, for each variable, as

the ratio of the square residual standard deviations, calculated for the objects

when projected on the model of the class(es) they do not belong, with

respect to that of the class they belong. The motivation is that we expect

the residuals of samples on a given variable being higher when fitted to a

different class model with respect to their own, if this variable is important

in discrimination (thus giving a high Dpow value).

Variables can then be ranked according to Dpow; again analogously to

VIP and SR a threshold criterion has to be established to accomplish a selec-

tion or to state which features are significantly contributing to class discrim-

ination and which are not.

The proposing authors did not indicate a privileged criterion, generically

indicated much above 1, and in literature, most used thresholds were 1–3,
average, median. In ref. [64], a criterion based on the use of probability plots,

preceded by the normalization of the DPow distribution through the

Box–Cox transformation, has been proposed.

3.2 Wrapper Method
3.2.1 Genetic Algorithms, GA (Any Classifier)
GA belong to randomized search algorithms category; they are inspired by

biological evolution theory and natural selection. In general, they allow an

efficient search of the “best solutions” in a given domain that, because of

dimension/complexity, cannot be explored systematically, according to a

fitness function (optimized), which takes the role of “fitness to the

environment” in natural evolution.

In the specific context of feature selection, the domain explored is con-

stituted by all the possible subsets of variables, and it is assumed that variables

that yield fitted models showing high performance (maximum fitness) have a

higher probability to “survive” and thus to be included in the selected set. In

practice, closely following the analogy with natural evolution: (1) an initial

generation (whose individual chromosomes are codifying presence/absence

of variables, i.e., are formed by a gene of 1 bit) is randomly generated; the

number of individuals in this generation is a tunable parameter; (2) the fitness

function (e.g. model classification performance in cross-validation) is calcu-

lated for each; (3) a number (to be set) of individuals with the highest fitness

are selected to survive until the next generation; (4) the “survivors” undergo

crossover (new individuals, number to be set, are created by combining part

of the bit of each “parent” chromosome) and mutation (analogous of repro-

duction a small probability of random switch between 0 and 1 in the
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chromosome is programmed) and (5) new individuals and “survivors” enter

the next generation and fitness is reestimated (back to step 2).

Thus, summarizing four parameters: population size, the probability of

initial selection (number of bits set equal to 1), the maximum number of

variables in a chromosome and the probability of mutation have to be

defined. They influence the balance between exploration (capability to con-

verge to the min/max in a region) and exploitation (capability of moving

from local min/max and assaying different regions of the domain). The

overall number of generations (i.e. how many iterations of steps 2–5, in
other words stopping of the algorithm) also has to be defined. Indeed, if

set too high, this could increase the risk of overfitting of the model, as also

using GA on data set with a small sample/variables ratio could do.

A detailed discussion of these and other aspects can be found in Leardi

[65], together with guidelines for parameters setting, and a specific imple-

mentation of GA which includes: a preliminary evaluation of the feasibility

of applying a GA to the data at hand; implementation of a randomization test

to assess when GA should stop; a quite high repeated number of run

(restarting from scratch) on the basis of which frequency of selection of each

variable can be evaluated; and a hybrid criterion for final feature selection.

GA may be linked to the different types of classifiers as far as a suitable

fitness function is defined, e.g., classification error in cross-validation.

Another drawback of GA, when used for spectral data, is that the number

of selected variables is not contiguous; a modification to take into account

the signal structure is to divide it in contiguous intervals and to consider a bit

as defining an interval instead of a single variable.

3.2.2 UVE-PLS and Interval-Based Selection (PLS-DA, ECVA Classifiers)
These methods belong to the ones operating a deterministic search, meaning

that a guided search of possible subsets of features is operated. Deterministic

wrapper methods require less computation than randomized ones, e.g., GA;

the number of parameters to tune is smaller and is less prone to overfitting.

On the other hand, they have a higher risk of finding local optima.

Obviously are computationally more intense than filter methods.

Uninformative variable elimination (UVE) [66] is based on the introduc-

tion in the original data set of noise variables in a number similar to an

explanatory variable with similar internal variability but multiplied by a very

small constant as to prevent that the random added variables will affect

the value of the regression coefficients of the model. A regression model
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(in the case of PLS-DA with the number of components equal to the one

selected for the full model with no random variables added) is then estimated

on the augmented data. By jackknife, the stability (reliability) of the regres-

sion coefficients for each variable is estimated as the ratio between its average

value and its standard deviation (standard deviation is calculated distinctly for

the original variables and the noise variables). In this way, a reference stabil-

ity value is chosen as the max of the ones estimated for the noise variables set

is used as a cutoff to eliminate uninformative variables. A new model is then

refitted, and its performance in the classification of a test set is evaluated; the

procedure is iterated reducing the model dimensionality by one unit at each

step, until no further improvement is observed.

A variant of the method uses resampling approaches as an alternative to

jackknife, while another implementation, MC-UVE, uses a Monte Carlo

approach to generate an ensemble of train/test splitting.

Interval-basedmethods, iPLS [67] and iECVA [68], are based on splitting

the whole set of variables in a set of small intervals (not necessarily of the

same size and may be allowed to overlap); a classification model (PLS-

DA or extended canonical variate analysis, i.e. ECVA) is then fitted for each

interval. The method can work in “forward” or “backward” mode. In

“forward” mode the intervals having the smallest cross-validated classifica-

tion error are selected in turn until including a number of specified intervals.

In “backward” mode the intervals having the largest error are removed iter-

atively until a number of specified intervals are left. The selected intervals

can also be optimized by including or eliminating single variables. The

interval-based selection has mainly been proposed in the context of

spectral data.

Several other wrapper methods have been proposed [40], and filter

methods may be turned to wrapper methods if the ranking/selection proce-

dure is iterated more than once.

In general, the main limitations in the application of these methods are

due to the lack of proper validation and unawareness of the applicability

condition depending on the ratio between the number of samples and

features.

Moreover, when the focus is on interpretation and recovering, e.g., in

proteomic or metabolomics all proteins or metabolites changing their

expression as a consequence of a disease or a treatment, wrapper methods

(especially random search algorithm) may tend to have quite high “false

negative” rate, since they tend to select a small number of features.
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3.3 Embedded Method (PLS-DA, LDA, PCA-DA Classifiers)
Distinctive of these methods is the fact that feature selection is nested in the

classification algorithm; the most used approaches are based on implemen-

tation of sparsity constraints, i.e., adding a penalty term in the least square

fitting, similarly to what has been implemented in ordinary least squares

regression by the LASSO [44,69] where it is minimized:

Xn
i¼1

yi� b0�
Xm
j¼1

bjxij

 !2

+ λ
Xp
j¼1

bj


 

 (42)

the first term in (42) is the usual least square errors minimization while the

second term is a penalty (l1 norm) term, which forces some regression coef-

ficients to become zero, hence operates feature selection. Other used pen-

alties are: the l2 norm (λ
Pp

j¼1bj
2), i.e., Ridge regularization, however in this

case regression coefficients become small but not zero; combination of l1 and

l2 norm (elastic net); or l0 norm, where the penalty term is on the number of

nonzero coefficients.

Sparse PLS [44,70] and PLS-DA [43,71] instead of using the penalty on

the regression coefficients vector impose it on the weights vector, sparse

PCA [72,73] on the loadings vectors and sparse LDA [45,71] on the canon-

ical variate vector.

In metabolomics, the most used method has been sparse PLS-DA

[43,44,71,74–76].
Moreover, recently an approach called statistical health monitoring

(SHM) [45] where a sparsity constraint is implemented on Mahalanobis dis-

tance has been proposed, with the aim of selecting characteristic feature of

not-healthy status, i.e., the author formulates a one-class problem (class

modelling) where the modelled class is the healthy one and distance is cal-

culated in the original domain (PCA compression is skipped).

The degree of sparseness and hence the number of selected features

depend on the tuning of the λ parameter; there are various suggestions

and often a “manual” tuning is adopted (passing by visual inspection or con-

sistency of interpretation of the selected features). In general, good results are

reported with sparse methods; however, there is no guarantee that all salient

biomarkers will be automatically identified.

3.4 Feature Selection in Wavelet Domain
Wavelet coefficients obtained fromWT decomposition (discrete or contin-

uous) of signals (spectra, chromatographic profiles) can be seen as a set of
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alternative variables and can be linked to any multivariate classifier. In par-

ticular, features selection can be done in the WT domain, i.e., selecting

wavelet coefficients instead of raw variables. The main advantage is that

in WT the different frequency contents of a signal are split into disjoint

decomposition blocks (approximations and details at a given scale); hence,

wavelet coefficients will reflect only part of the information present in the

original data and selection of salient feature may be enhanced [46,77].

In general, almost all the feature selection methods described in the pre-

vious sections can be applied to WT coefficients; most used are filter and

wrapper methods, e.g., GA [46,78]. Specific of feature selection in WT

domain is that it can be applied scale/level-wise [79] or coefficients-wise

[46,80,81], as well as the fact that WT decomposition parameters have to

be set, such as a wavelet filter, decomposition level; some algorithms try

to automatically iterate on these settings [46].

Even if, not always operated, since classification models are obtained

based on using wavelet coefficients, reconstruction of selected coefficients

in the original domain by the inverse WT is particularly useful for interpre-

tation of the models.

4. VALIDATION

Validation is a key stage of chemometric modelling as it is the ensem-

ble of operations which allows evaluating the quality of a model and how

reliable all its aspects (predictions, interpretation, subspace estimation, just

to cite a few) are [82,83]. Although validation should follow each kind of

chemometric approach, its role and impact are absolutely fundamental

whenever predictive modelling is involved. Indeed, since most of the prac-

tical applications of predictive modelling (especially in the omic field)

involve measuring a very high number of variables on a limited number

of individuals, issues such as undersampling (not enough specimens to

accurately describe the class distribution) or chance correlations may result

in overfitting, i.e., on model parameters adjusted so well to the training

data that are not able to produce reliable outcomes for new unknown

samples [84].

This is because chemometric models are almost always “soft”, i.e., data-

driven models, built as to approximate as better as possible the system under

investigation (to capture a high share of the experimental variance) and,

when needed, to provide predictions of the responses which are as close

as possible to their true values.
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In this context, validation allows evaluating how appropriate and reliable

the model is for the specific purpose, by the use of specific strategies and

diagnostics which can capture in one or few figures of merit the model qual-

ity. In particular, especially when predictive modelling is concerned, all the

most frequently used diagnostics are based on the calculation of some sort of

residuals (or classification error, such as the one in Eq. 2). Accordingly, based

on the considerations reported above, to avoid overoptimistic estimates, it is

essential that the validation diagnostics be not calculated based on the fitted

residuals (i.e. those resulting from the application of themodel to the samples

used for model building), as they will never be distributed as those which

one expects to occur on new data (i.e. from individuals which never took

part in model building or model selection). It is then evident that, in order to

properly validate a (classification) model, one should apply the model to a

completely independent set of samples (test set) which should be as repre-

sentative as possible of the practical use of the model on future individuals

and for which the true values of the responses to be predicted (e.g. the class

labels of the samples) should be known as well. The last condition is neces-

sary in order to calculate the validation diagnostics, which are in general

defined in terms classification error (see Eq. 2), even if, especially in the cases

where only two classes are present, other figures of merit such as the area

under the ROC curve [85], or the discriminant Q2 [85,86] are also used.

When the number of samples is not large, and there is no possibility of

keeping aside a set of samples as an independent validation set, as this would

involve either one or both sets (training and test) not to be representative

enough to formulate reliable conclusions, one could make use of resampling

strategies, the most commonly used of which is cross-validation. In cross-

validation, the available set of data is split into a predetermined number

M of so-called cancellation groups, so that, in turn, one of the cancellation

groups is left aside as a test set, and the model is built using the remaining

M�1 as the training set. Sometimes the procedure can be repeated more

than once, with different data splittings, in order to obtain results which

are less insensitive to the specific sample partitioning scheme. The advantage

of the use of cross-validation is that it can provide reasonable estimates also in

cases where there are not many samples in the data set; on the other hand,

due to the resampling strategy, the validation samples may never be consid-

ered as truly independent from the training set, so that there is still the pos-

sibility of obtaining overoptimistic results.

In general, whenever possible, it is preferable to use cross-validation only

for the model selection stage, when there is the need to optimize model
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parameters and/or metaparameters and, once the optimal model has been

calculated, to use a truly independent set for its validation. Here it is funda-

mental to stress that validation should comprise all stages of model selection,

including variable selection, which should be subjected to complete valida-

tion through what is called a cross-model validation procedure [87].

When the number of samples is limited, but one still wants to obtain reli-

able estimates of the prediction error (or of other figures of merit), a possi-

bility is to use DCV [84], which consists in two nested cross-validation

loops, in which the inner one is used for model selection and model building

and the outer one for model validation. Permutation tests may then be used

to further safeguard against overoptimism and model overinterpretation,

since they allow to verify whether the observed discrimination between

the classes may be considered significant or just due to chance (e.g. as a con-

sequence of undersampling). In permutation tests, the class label of the

samples is randomly permuted and classification models are built on the per-

muted data: the results obtained on permuted data are used to build the non-

parametric empirical distribution of the classification figures of merit under

the null hypothesis, which, in turn, are used to test whether the observed

discrimination could be considered as statistically significant or not.
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