Pervasive sensing of people's opinions is becoming critical in strategic decision processes, as it may be helpful in identifying problems and strengthening strategies. A recent research trend is to understand users' opinions through a sentiment analysis of contents published in the Twitter platform. This approach involves two challenges: the large volume of available data and the large variety of used languages combined with the brevity of texts. The former makes manual analysis unreasonable, whereas the latter complicates any type of automatic analysis. Since sentiment analysis is a difficult process for computers, but it is quite simple for humans, in this article we transform the sentiment analysis process into a game. Indeed, we consider the game with a purpose approach and we propose a game that involves users in classifying the polarity (e.g., positive, negative, neutral) and the sentiment (e.g., joy, surprise, sadness, etc.) of tweets. To evaluate the proposal, we used a dataset of 52,877 tweets, we developed a Web-based game, we invited people to play the game, and we validated the results through a ground-truth approach. The experimental assessment showed that the game approach is effective in measuring people' sentiments and also highlighted that participants liked to play the game.
Sentiment analysis and Twitter: a game proposal, / Furini, Marco; Montangero, Manuela. - In: PERSONAL AND UBIQUITOUS COMPUTING. - ISSN 1617-4909. - 22:4(2018), pp. 771-785. [10.1007/s00779-018-1142-5]
Sentiment analysis and Twitter: a game proposal,
Marco Furini;Manuela Montangero
2018
Abstract
Pervasive sensing of people's opinions is becoming critical in strategic decision processes, as it may be helpful in identifying problems and strengthening strategies. A recent research trend is to understand users' opinions through a sentiment analysis of contents published in the Twitter platform. This approach involves two challenges: the large volume of available data and the large variety of used languages combined with the brevity of texts. The former makes manual analysis unreasonable, whereas the latter complicates any type of automatic analysis. Since sentiment analysis is a difficult process for computers, but it is quite simple for humans, in this article we transform the sentiment analysis process into a game. Indeed, we consider the game with a purpose approach and we propose a game that involves users in classifying the polarity (e.g., positive, negative, neutral) and the sentiment (e.g., joy, surprise, sadness, etc.) of tweets. To evaluate the proposal, we used a dataset of 52,877 tweets, we developed a Web-based game, we invited people to play the game, and we validated the results through a ground-truth approach. The experimental assessment showed that the game approach is effective in measuring people' sentiments and also highlighted that participants liked to play the game.File | Dimensione | Formato | |
---|---|---|---|
TGame-revised.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
714.04 kB
Formato
Adobe PDF
|
714.04 kB | Adobe PDF | Visualizza/Apri |
Furini-Montangero2018_Article_SentimentAnalysisAndTwitterAGa.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris