We consider weak solutions of second-order partial differential equations of Kolmogorov-Fokker-Planck-type with measurable coefficients in the form ∂tu + (v,∇xu) = div(A(v,x,t)∇vu) + (b(v,x,t),∇vu) + f, (v,x,t) ϵ2n+1, where A is a symmetric uniformly positive definite matrix with bounded measurable coefficients; f and the components of the vector b are bounded and measurable functions. We give a geometric statement of the Harnack inequality recently proved by Golse et al. As a corollary, we obtain a strong maximum principle.
A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients / Anceschi, Francesca; Eleuteri, Michela; Polidoro, Sergio. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 21:7(2019), pp. 1-17. [10.1142/S0219199718500578]
A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients
ANCESCHI, FRANCESCA;Michela Eleuteri
;Sergio Polidoro
2019
Abstract
We consider weak solutions of second-order partial differential equations of Kolmogorov-Fokker-Planck-type with measurable coefficients in the form ∂tu + (v,∇xu) = div(A(v,x,t)∇vu) + (b(v,x,t),∇vu) + f, (v,x,t) ϵ2n+1, where A is a symmetric uniformly positive definite matrix with bounded measurable coefficients; f and the components of the vector b are bounded and measurable functions. We give a geometric statement of the Harnack inequality recently proved by Golse et al. As a corollary, we obtain a strong maximum principle.File | Dimensione | Formato | |
---|---|---|---|
AEP.pdf
Open access
Descrizione: Preprint
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
173.98 kB
Formato
Adobe PDF
|
173.98 kB | Adobe PDF | Visualizza/Apri |
VOR_A geometric stetement.pdf
Accesso riservato
Descrizione: UB upload
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris