Duplicate detection aims to identify different records in data sources that refers to the same real-world entity. It is a fundamental task for: item catalogs fusion, customer databases integration, fraud detection, and more. In this work we present BigDedup, a toolkit able to detect duplicate records on Big Data sources in an efficient manner. BigDedup makes available the state-of-the-art duplicate detection techniques on Apache Spark, a modern framework for distributed computing in Big Data scenarios. It can be used in two different ways: (i) through a simple graphic interface that permit the user to process structured and unstructured data in a fast and effective way; (ii) as a library that provides different components that can be easily extended and customized. In the paper we show how to use BigDedup and its usefulness through some industrial examples.

BigDedup: a Big Data Integration toolkit for Duplicate Detection in Industrial Scenarios / Gagliardelli, Luca; Zhu, Song; Simonini, Giovanni; Bergamaschi, Sonia. - 7:(2018), pp. 1015-1023. (Intervento presentato al convegno 25th International Conference on Transdisciplinary Engineering (TE2018) tenutosi a Modena nel July 3-6, 2018) [10.3233/978-1-61499-898-3-1015].

BigDedup: a Big Data Integration toolkit for Duplicate Detection in Industrial Scenarios

Gagliardelli, Luca
;
Zhu, Song;Simonini, Giovanni;Bergamaschi, Sonia
2018

Abstract

Duplicate detection aims to identify different records in data sources that refers to the same real-world entity. It is a fundamental task for: item catalogs fusion, customer databases integration, fraud detection, and more. In this work we present BigDedup, a toolkit able to detect duplicate records on Big Data sources in an efficient manner. BigDedup makes available the state-of-the-art duplicate detection techniques on Apache Spark, a modern framework for distributed computing in Big Data scenarios. It can be used in two different ways: (i) through a simple graphic interface that permit the user to process structured and unstructured data in a fast and effective way; (ii) as a library that provides different components that can be easily extended and customized. In the paper we show how to use BigDedup and its usefulness through some industrial examples.
2018
25th International Conference on Transdisciplinary Engineering (TE2018)
Modena
July 3-6, 2018
7
1015
1023
Gagliardelli, Luca; Zhu, Song; Simonini, Giovanni; Bergamaschi, Sonia
BigDedup: a Big Data Integration toolkit for Duplicate Detection in Industrial Scenarios / Gagliardelli, Luca; Zhu, Song; Simonini, Giovanni; Bergamaschi, Sonia. - 7:(2018), pp. 1015-1023. (Intervento presentato al convegno 25th International Conference on Transdisciplinary Engineering (TE2018) tenutosi a Modena nel July 3-6, 2018) [10.3233/978-1-61499-898-3-1015].
File in questo prodotto:
File Dimensione Formato  
ATDE7-1015.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 949.9 kB
Formato Adobe PDF
949.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1165040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 1
social impact