A new characterization technique and an improved model for charge injection and transport through ONO gate stacks are used to investigate the program/retention sequence of silicon nitride-based (SONOS/TANOS) nonvolatile memories. The model accounts for drift-diffusion transport in the conduction band of silicon nitride (SiN). A priori assumptions on the spatial distribution of the charge at the beginning of the program/retention operations are not needed. We show that the carrier transport in the SiN layer impacts the spatial distribution of the trapped charge and, consequently, several aspects of program and retention transients. A few model improvements allow us to reconcile the apparent discrepancy between the values of silicon nitride trap energies extracted from program and retention experiments, thus reducing the number of model parameters.
Experimental and Simulation Analysis of Program/Retention Transients in Silicon Nitride-Based NVM Cells / Vianello, Elisa; Driussi, Francesco; Arreghini, Antonio; Palestri, Pierpaolo; Esseni, David; Selmi, Luca; N., Akil; M. J., van Duuren; D. S., Golubovic. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - 56:9(2009), pp. 1980-1990. [10.1109/TED.2009.2026113]
Experimental and Simulation Analysis of Program/Retention Transients in Silicon Nitride-Based NVM Cells
PALESTRI, Pierpaolo;SELMI, Luca;
2009
Abstract
A new characterization technique and an improved model for charge injection and transport through ONO gate stacks are used to investigate the program/retention sequence of silicon nitride-based (SONOS/TANOS) nonvolatile memories. The model accounts for drift-diffusion transport in the conduction band of silicon nitride (SiN). A priori assumptions on the spatial distribution of the charge at the beginning of the program/retention operations are not needed. We show that the carrier transport in the SiN layer impacts the spatial distribution of the trapped charge and, consequently, several aspects of program and retention transients. A few model improvements allow us to reconcile the apparent discrepancy between the values of silicon nitride trap energies extracted from program and retention experiments, thus reducing the number of model parameters.File | Dimensione | Formato | |
---|---|---|---|
05184881.pdf
Accesso riservato
Dimensione
416.2 kB
Formato
Adobe PDF
|
416.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris