This paper proposes a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the image segmentation field, and a Convolutional-Deconvolutional Neural Network (CDNN) to automatically generate lesion segmentation mask from dermoscopic images. Training the CDNN with our GAN generated data effectively improves the state-of-the-art.

Improving Skin Lesion Segmentation with Generative Adversarial Networks / Pollastri, Federico; Bolelli, Federico; Paredes, Roberto; Grana, Costantino. - 2018-:(2018), pp. 442-443. (Intervento presentato al convegno 31st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2018 tenutosi a Karlstad, Sweden nel Jun 18-21) [10.1109/CBMS.2018.00086].

Improving Skin Lesion Segmentation with Generative Adversarial Networks

Federico Pollastri;Federico Bolelli
;
Costantino Grana
2018

Abstract

This paper proposes a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the image segmentation field, and a Convolutional-Deconvolutional Neural Network (CDNN) to automatically generate lesion segmentation mask from dermoscopic images. Training the CDNN with our GAN generated data effectively improves the state-of-the-art.
2018
23-lug-2018
31st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2018
Karlstad, Sweden
Jun 18-21
2018-
442
443
Pollastri, Federico; Bolelli, Federico; Paredes, Roberto; Grana, Costantino
Improving Skin Lesion Segmentation with Generative Adversarial Networks / Pollastri, Federico; Bolelli, Federico; Paredes, Roberto; Grana, Costantino. - 2018-:(2018), pp. 442-443. (Intervento presentato al convegno 31st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2018 tenutosi a Karlstad, Sweden nel Jun 18-21) [10.1109/CBMS.2018.00086].
File in questo prodotto:
File Dimensione Formato  
CBMS_2018_paper_177.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 596.94 kB
Formato Adobe PDF
596.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1161448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 19
social impact