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Abstract—This paper proposes a novel strategy that em-
ploys Generative Adversarial Networks (GANs) to augment
data in the image segmentation field, and a Convolutional-
Deconvolutional Neural Network (CDNN) to automatically
generate lesion segmentation mask from dermoscopic images.
Training the CDNN with our GAN generated data effectively
improves the state-of-the-art.

I. INTRODUCTION

Malignant melanoma is the most dangerous skin cancer,
with a substantial death rate. It can be cured with prompt
excision if detected in the early stage, making fast diagnosis
extremely important. The relevance of a fast diagnosis is
also emphasized by the public challenge of the International
Skin Imaging Collaboration (ISIC) [1].

In this paper we present a Convolutional-Deconvolutional
Neural Network (CDNN), to automatically generate the le-
sion segmentation mask, focusing on the data augmentation
process. In particular, we propose a framework to generate
both skin lesion images and their segmentation masks by
means of a Generative Adversarial Network (GAN).

II. DATA AUGMENTATION WITH GANS

In order to avoid trivial comparisons, we select and re-
implement the baseline CDNN from the architecture that
obtained the highest score in 2017’s ISIC challenge. This
network maps the input dermoscopic image to a posterior
probability map. With respect to the original paper, data
augmentation is obtained only by randomly flipping and ro-
tating original images. Shifts, scalings and contrast changes
are avoided. We could not reproduce the original bagging-
type ensemble method since it is only mentioned and not
described in the original paper [2].

A. Hyperparameters Analysis

Ensemble methods require different techniques to be com-
bined and used together, so we choose to introduce variations
on the original CDNN, our baseline model, changing the
three main hyperparameters.

1) Resizing Dimensions: We train two different additional
networks respectively doubling and halving sizes of input
images. Since we do not change the stride and the size of
convolutional filters, the scaling factor between layers re-
mains the same. This provides two networks with a different
encoded representation size.

Figure 1. Samples from the generated dataset. The GAN learns to
reproduce small details like bright colored plasters and pen marks.

2) Image Channels: In the original paper both HSV and
L* channels were added. All these channels are obtained
by means of non linear transformations. One question could
be whether the model is able to independently learn these
transformations autonomously. To this aim, we train two
networks, one with just the three RGB channels and one
with every channel from RGB, HSV and CIELAB spaces.

3) Loss Function: The loss function designed in [2] is:

L = 1−
∑

tijpij/(
∑

t2ij +
∑

p2ij −
∑

tijpij), (1)

where tij is the target value of the pixel at coordinates (i, j),
and pij is the real output. Note that tij is either 0 or 1, while
pij is a real number in range [0, 1]. The distance measure in
Eq. 1 is said to be “based on the Jaccard distance”. In fact,
Eq. 1 is the Tanimoto distance, which is a proper distance
when both vectors have only positive elements, and it is
equal to the Jaccard distance only with binary vectors [3].
In our case, only the target is binary, but the prediction is a
real value between 0 and 1. The correct (generalized) Jaccard
distance on real positive vectors is defined as

dJ = 1−
∑

min(tij , pij)/
∑

max(tij , pij). (2)

Since tij is still binary, Eq. 2 can also be computed as

dJ = 1−
∑

tijpij/(
∑

tij +
∑

pij −
∑

tijpij), (3)

which may be the reason for the common confusion (note
the missing squares).



Table I
ANALYSIS OF THE NEURAL NETWORKS TRAINED FOR THE TASK

NN Input Size Chs Loss No Augm. Augm.
CDNN0 192× 256 7 Eq. 1 0.731 0.743
CDNN1 192× 256 3 Eq. 1 0.732 0.753
CDNN2 192× 256 9 Eq. 1 0.734 0.743
CDNN3 96× 128 7 Eq. 1 0.735 0.750
CDNN4 384× 512 7 Eq. 1 0.700 —
CDNN5 192× 256 7 Eq. 3 0.738 0.738
CDNN6 192× 256 7 MSE 0.738 0.739

Ensemble: 0.781

We thus train two more variations of the model. The first
one uses the proper Jaccard distance and the other one the
mean squared error function (MSE).

B. Learning to Augment Data

GANs are often used to create unlabeled examples, which
cannot be directly employed for the training of a supervised
algorithm [4]. We try to improve the role of the GAN
in the training process by implementing an architecture
which generates both the image and its segmentation mask,
making it extremely easy to exploit new synthetic images as
additional training data. We modify the Deep Convolutional
GAN (DCGAN) proposed by Radford [5] in order to feed it
4 channel images: the first three channels are the R, G and
B components and the fourth one is the binary segmentation
mask. Through our generator, we create an augmented
training set of 10000 image/segmentation mask couples to
improve the accuracy. An example of the generated images
is shown in Fig. 1.

III. EXPERIMENTAL RESULTS

Experimental results are summed up in Table I. The sec-
ond last column shows that most of the variations explored
with the hypeparameters analysis obtain results close to our
baseline network (CDNN0), with a Jaccard index between
0.73 and 0.74. The deviations are in the same order of
magnitude of those obtained changing the random weights
initialization. The only case where an actual difference is
noticeable is the CDNN4 network, the one with larger
images (Jaccard index of 0.70), which is removed from
further analysis.

The second experiment introduces the synthetic data in
the training process of the previously described networks,
splitting it in two phases: the CDNNs are firstly trained
with the generated dataset and then fed with the original
training data. The Jaccard Indexes obtained through this
process are reported in the last column of Table I. Results
show the effectiveness of adding the GAN generated data in
the training process.

Finally, following an approach inspired by [2], we merge
the 6 segmentation masks obtained with the 6 different
CDNNs and apply a dual-threshold method, followed by
Connected Components Labeling [6]. We achieve a final
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Figure 2. (a) Input image and ground truth. (b) Outputs ensemble before
and after binarization. (c) Output prediction of our CDNNs. Top row shows,
from left to right, the output of CDNN1, CDNN2 and CDNN3. Bottom
row shows CDNN0, CDNN5 and CDNN6.

accuracy (Jaccard Index) of 0.781, thus improving the state-
of-the-art of 0.765. The complexity of the task and the nature
of the original dataset make this improvement relevant. A
visual example of the effectiveness of our ensemble method
is reported in Fig. 2.

IV. CONCLUSION

In this paper we proposed a new method to exploit GANs
in the data augmentation process in order to improve the skin
lesion segmentation task without requiring annotation of new
data, which is very expansive and time consuming in many
medical fields. GANs are used to generate both skin lesion
images and their segmentation masks, creating a tool for
automatic data augmentation, which can be integrated in any
supervised learning model and useful for many segmentation
tasks.
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