This paper considers a learnable approach for comparing and aligning videos. Our architecture builds upon and revisits temporal match kernels within neural networks: we propose a new temporal layer that finds temporal alignments by maximizing the scores between two sequences of vectors, according to a time-sensitive similarity metric parametrized in the Fourier domain. We learn this layer with a temporal proposal strategy, in which we minimize a triplet loss that takes into account both the localization accuracy and the recognition rate. We evaluate our approach on video alignment, copy detection and event retrieval. Our approach outperforms the state on the art on temporal video alignment and video copy detection datasets in comparable setups. It also attains the best reported results for particular event search, while precisely aligning videos.
LAMV: Learning to align and match videos with kernelized temporal layers / Baraldi, Lorenzo; Douze, Matthijs; Cucchiara, Rita; Jégou, Hervé. - (2018), pp. 7804-7813. ((Intervento presentato al convegno IEEE/CVF Conference on Computer Vision and Pattern Recognition tenutosi a Salt Lake City, UT, USA, USA nel June 18-22.
Data di pubblicazione: | 2018 |
Titolo: | LAMV: Learning to align and match videos with kernelized temporal layers |
Autore/i: | Baraldi, Lorenzo; Douze, Matthijs; Cucchiara, Rita; Jégou, Hervé |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/CVPR.2018.00814 |
Codice identificativo Scopus: | 2-s2.0-85061019248 |
Codice identificativo ISI: | WOS:000457843607099 |
Nome del convegno: | IEEE/CVF Conference on Computer Vision and Pattern Recognition |
Luogo del convegno: | Salt Lake City, UT, USA, USA |
Data del convegno: | June 18-22 |
Pagina iniziale: | 7804 |
Pagina finale: | 7813 |
Citazione: | LAMV: Learning to align and match videos with kernelized temporal layers / Baraldi, Lorenzo; Douze, Matthijs; Cucchiara, Rita; Jégou, Hervé. - (2018), pp. 7804-7813. ((Intervento presentato al convegno IEEE/CVF Conference on Computer Vision and Pattern Recognition tenutosi a Salt Lake City, UT, USA, USA nel June 18-22. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
1517.pdf | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris