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Abstract

This paper considers a learnable approach for compar-
ing and aligning videos. Our architecture builds upon and
revisits temporal match kernels within neural networks: we
propose a new temporal layer that finds temporal align-
ments by maximizing the scores between two sequences
of vectors, according to a time-sensitive similarity metric
parametrized in the Fourier domain. We learn this layer
with a temporal proposal strategy, in which we minimize a
triplet loss that takes into account both the localization ac-
curacy and the recognition rate.

We evaluate our approach on video alignment, copy de-
tection and event retrieval. Our approach outperforms the
state on the art on temporal video alignment and video copy
detection datasets in comparable setups. It also attains the
best reported results for particular event search, while pre-
cisely aligning videos.

1. Introduction

Thanks to the success of neural networks and the avail-
ability of large annotated collections of images like Im-
agenet [4] and COCO [23], we have recently witnessed
drastic improvements on many core computer vision prob-
lems, such as image classification [22, 14] and segmenta-
tion [13]. The analysis of videos has largely benefited from
this game-changing adoption of neural networks, in partic-
ular by exploiting state-of-the-art image networks. Cur-
rent methods for tackling video-related tasks mostly rely
on the trunk of neural network architectures trained on im-
ages [32, 34, 9, 21].

Many attempts to exploit the temporal axis of videos
within neural architectures have been proposed. These ap-
proaches typically extract information at the frame level and

∗This work was carried out while L. Baraldi was in a internship at Face-
book AI Research.
This academic article may contain images and/or data from sources that
are not affiliated with the article submitter. Inclusion should not be con-
strued as approval, endorsement or sponsorship of the submitter, article or
its content by any such party.

…

normalizations

Learnable
Temporal kernels

Video 
descriptor

Period
Forward

Backpropagation

Frame-level
descriptors

Kernel scores

Figure 1: We present a learnable temporal layer that com-
pares and precisely aligns videos by means of multi-period
temporal kernels parametrized in the Fourier domain.

subsequently enforce or mesure the temporal consistency.
For instance, Kang et al. [21] propose a temporal convolu-
tional network to regularize object detection results. Fer-
nando et al. [9] postulate that a method able to temporally
re-order the frames of a video would be more suitable to
detect the evolution of appearance, and use this supervision
signal to improve action recognition. Diba et al. [5] in-
vestigate different ways of aggregating feature maps from
image-level convolutional neural networks to achieve an
end-to-end learning of a video representation.

On the contrary, only few works consider learning a joint
spatio-temporal representation, like the C3D network [32].
Several difficulties may explain this situation. First, the
amount of temporally-labelled data is limited: for large col-
lections the annotation is provided at the video level only,
or automatically extracted, or both [1]. Second, the num-
ber of parameters to learn a spatio-temporal representation
is generally much larger than for still images. Third, de-
pending on the task, it is not obvious that temporality is at
all useful. For instance, the recent high-profile leaderbord



competition1 on video understanding was won by a tech-
nique agnostic of temporality [24].

In this paper, we tackle the task of retrieving and align-
ing similar video instances. This problem arises in differ-
ent applications such as copy detection, particular event de-
tection, video editing and re-purposing. In the literature,
one can distinguish the methods offering temporal align-
ment and those discarding the time information, typically
through temporal pooling operations. According to a com-
parative study on copy detection conducted in 2014 [19], the
best methods were relying on local descriptors and frame-
based matching [18], even though temporal alignment is of-
ten needed later, for example to manually verify a copyright
infringement. In contrast, the state of the art for particular
event retrieval [6, 11] exploits a single vector per video.

Similarly, because accurate video alignment requires
matching with a frame-level granularity, methods based on
temporal pooling [8, 32, 10, 25] inevitably introduce some
invariance to small time shifts. They are therefore not ap-
propriate for achieving high localization accuracy.

In order to preserve the capability to align videos while
offering a competitive recognition accuracy, another line of
research considers Fourier-domain representations, like the
circulant temporal encoding (CTE) [28, 7] inspired by prior
works on tracking with correlation filters [16, 17]. In our
work, we consider the temporal matching kernel (TMK) by
Poullot et al. [26]. This representation consists of com-
plementary periodic encodings of a sequence of frames
into a fixed-sized representation. It provides both an accu-
rate matching and alignment hypothesis, and outperforms
CTE [28] in terms of alignement accuracy.

An advantage of TMK is that it disentangles the visual
and temporal aspects while keeping the temporal consis-
tency. Our proposal revists temporal match kernels in the
context of a neural network. More specifically, we propose
a temporal layer inspired by TMK [26]. The design is mod-
ified and the parameters are learned with a supervision sig-
nal that takes into account both the matching quality and the
precision of the alignement. This is in contrast to the orig-
inal technique, where the parameters are hand-crafted by a
choice of a specific kernel (Von Mises). To train our layer,
we adopt a temporal proposal strategy providing both pos-
itive and negative examples. The learning is performed on
both real and synthetic data simulating temporal and visual
attacks undergone by videos for our different tasks.

As a complementary contribution, we provide guidelines
for tuning the hyper-parameters, in particular the design of
better complementary elementary kernels. This, by itself,
provides a significant boost, leading us to outperform the
state of the art for temporal video alignment, copy detection
and event retrieval on the public benchmarks Madonna [7],
Climbing [7], VCDB [19] and EVVE [28].

1https://www.kaggle.com/c/youtube8m/leaderboard

The rest of this paper is organized as follows. After re-
viewing the fundamentals of temporal match kernels in Sec-
tion 2, we introduce our approach in Section 3 and evaluate
it in Section 4.

2. Related work and Temporal kernels
For a given video to describe, we consider a sequence

of frame descriptors extracted at distinct timestamps T =
{t1, . . . , ti, . . . }. Each frame fi is represented as a tuple
(xi, ti), where xi is a d-dimensional vector and ti denotes
the scalar timestamp of the frame. The frame descriptor
xi is typically obtained by post-processing hand-crafted or
CNN-based representations. We assume that the frame de-
scriptors are `2-normalized and are compared with inner
products, or equivalently with the cosine similarity.
Joint frame and timestamp encoding. We consider a ker-
nel function between frames descriptors such that the simi-
larity between a pair of descriptors takes into account their
absolute position in time. This operation is commonly re-
ferred to as a modulation. Formally, it amounts to defining
a kernel between frame descriptors x and x′ with respective
timestamps t and t′ as

k ((x, t), (x′, t′)) = 〈x,x′〉kt(t, t′) (1)

= 〈x,x′〉ϕ(t)>ϕ(t′), (2)

where ϕ(·) is a feature map function approximating the ker-
nel kt between timestamps, which lowers the similarity be-
tween frames that are distant in time. By convention, we
set kt(t, t′) = 0 if t or t′ are outside the range of the valid
timestamps for the two videos. Further algebraic manipula-
tion reveals that this kernel can be expressed as

k((x, t), (x′, t′)) = (x⊗ ϕ(t))> (x′ ⊗ ϕ(t′)) , (3)

where ⊗ is the Kronecker product. Therefore, we describe
the tuple (xt, t) by a single feature vector, namely xt⊗ϕ(t).

Temporal match kernel. Given two videos represented by
the sequences of frame descriptors X = {(xi, ti)}i and
X′ = {(x′j , t′j)}j , we consider the temporal kernel

Kδ(X,X′) =
∞∑
i=0

∞∑
j=0

k((xi, ti), (x
′
j , t
′
j + δ)), (4)

that compares the videos on a frame-by-frame basis, assum-
ing that the videos are shifted in time by the duration δ.
With Eqn. 3, this kernel is subsequently re-written as

Kδ(X,X′) =
( ∞∑
i=0

xi ⊗ ϕ(ti)︸ ︷︷ ︸
ψ0(X)

)>( ∞∑
j=0

x′j ⊗ ϕ(t′j + δ)︸ ︷︷ ︸
ψδ(X′)

)
,

(5)



where ψ0(X) is the descriptor associated with the first
video, and ψδ(X′) is the descriptor associated with the sec-
ond video and re-mapped to the new time origin δ.

In the temporal match kernel from Poullot et al. [26],
kt is expressed by means of a Fourier approximation with
period T and M coefficients. In this case, the feature vector
representing a video can be written as

ψ0(X) =
[
V >0 , V

>
1,c, V

>
1,s, ..., V

>
M,c, V

>
M,s

]>
, (6)

where:

V >0 =
√
a0
∑
ti∈T

xi (7)

V >m,c =
√
am

∑
ti∈T

xi cos (2mπti/T ) (8)

V >m,s =
√
am

∑
ti∈T

xi sin (2mπti/T ) , (9)

where am are the coefficients of the Fourier series. If T
consists of evenly-spaced timestamps2, this is equivalent to
taking the Fourier transform of the input time series with
period T and convolving it with ϕ(t). It leads to a feature
vector with dimensionality d× (2m+ 1).

Alternative choices for ϕ exist. For instance, this kind of
kernel approximation was first defined with random Fourier
features [27]. Vedaldi and Zisserman [33] show that ex-
plictly using the Fourier decomposition gives a much better
approximation of shift-invariant kernels. By departing from
the Fourier basis, Chum [3] shows how to learn sparse fea-
ture maps improving the compromise between the number
of coefficients and the approximation of a kernel.

Trigonometric polynomial of scores. At this stage, ψ0(X)
is a representation of the video. The first component V0
is the average frame descriptor and can be used to directly
compare two videos, in this case discarding the temporal
information. Yet one of the strength of the chosen kernel-
ization is that it keeps a latent variable and allows the maxi-
mization of the kernel w.r.t. this variable. This property was
first exploited by Tolias et al. [30] when aggregating local
descriptors. Bursuc et al. [2] exploit it to define a kernel lo-
cal descriptor that automatically adjust the orientation and
scale to maximize the matching score when provided with
two candidate descriptors.

In our context, the latent variable is the relative time off-
set between the two videos. Consider a given alignment hy-
pothesis and two videos X and X′: the similarity between

2For typical choices of the kernel ϕ, one can use unevenly-spaced
timestamps, such as those chosen by a frame selection technique. The
method can also compare videos with different frame rates (25 Hz vs
30 Hz). In this paper, the timestamps evenly selected at a frequency of
15 Hz in order to be closer to the setup proposed in the literature [28, 7].

two video sequences is computed, for a given alignment hy-
pothesis, as

Kδ(X,X′) = V >0 V
′
0

+

M∑
m=1

cos

(
2mπδ

T

)
(V >m,cV

′
m,c + V >m,sV

′
m,s)

+

M∑
m=1

sin

(
2mπδ

T

)
(−V >m,cV ′m,s + V >m,sV

′
m,c).

(10)

Therefore, the score as a function of δ is a trigonomet-
ric polynomial of degree M . Evaluating this polynomial at
regular timestamps is efficient and only requires 1+4M dot
products between vectors of dimension d.
Multiple periods. Poullot et al. [26] employ multiple ker-
nels with distinct periods, shorter than the video length, and
take the sum of the kernel scores as the final similarity mea-
sure. This increases localization accuracy while inducing a
large period for the kernel summation.

3. Proposed approach: LAMV
We revisit the temporal match kernel as a global video

descriptor to compute the similarity between videos and
align them temporally. This approach is referred to as
LAMV (Learning to Align and Match Videos). For this, we
transform the kernel into a differentiable layer, and learn the
coefficients of the feature transform by imposing a triplet
loss that jointly takes into account (i) the similarity scores
produced when comparing two videos globally, and (ii) the
temporal alignment accuracy when processing overlapping
videos. The batches on which the loss is evaluated contain
hard negative proposals. We also devise a normalization
strategy that enhances retrieval and alignment performance.

3.1. Overview: Layerizing temporal match kernels

All the operations involved in the computation of scores
produced by the temporal match kernel are differentiable
with respect to their parameters ai, even when using multi-
ple periods. The kernel can be seen as a differentiable layer
that can compute the similarity between two videos. The
Fourier coefficients of the feature map ϕ(·) are parameters
that can be learned by backpropagating a supervision signal
built on the similarity scores.

The LAMV layer can aggregate frame-level features to
compute a video feature vector, and it can then compare two
videos by shifting one of the two descriptors. In this regard,
its structure resambles that of Siamese networks, in which
the same function is applied to two branches, then compared
by a distance function.

Given a set P of periods for which the kernel is com-
puted, each video segment X is encoded by taking a Fourier
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Figure 2: Response of the individual filters (top) when matching a video with a temporally-cropped excerpt of the same
video. The bottom figure shows the combination of the response. The ground truth alignment point is δ∗ = 1000.

transform for each of the periods in P , and subsequently
applying the feature map ϕ(·) according to Eqn. 6. This
process results into a tensor ψ0(X) with dimensionality
d × (2m + 1) × |P|, where one of the axes is along the
different periods.

Two video features are compared for a set of time shifts
{δ0, ..., δi, ...} by taking the dot products of Eqn. 10 for
each period and then summing, resulting in a scalar score
for each shift. Once a loss function Lδ is defined over the
score obtained for a time shit δ, its partial derivative with
respect to the learnable Fourier coefficients of each of the
periods in P are expressed from the derivatives as

δKδ(X,X′)
∂a0

= Ṽ >0 Ṽ
′
0 (11)

and

δKδ(X,X′)
∂am

= cos

(
2mπδ

T

)
(Ṽ >m,cṼ

′
m,c+ Ṽ

>
m,sṼ

′
m,s)+

+ sin

(
2mπδ

T

)
(−Ṽ >m,cṼ ′m,s + Ṽ >m,sṼ

′
m,c) (12)

where we define Ṽ0 and Ṽm,∗ as V0√
a0

and Vm,∗√
am

, respectively.

Normalizations. With the aim of reducing the interferences
caused by the strong self-similarity present in videos, we
apply two normalization steps which improve the alignment
and retrieval performance of the descriptor. First, the Ṽ0 and
Ṽm,∗ vectors are `2-normalized, so that ψ0(X) becomes a
concatenation of normalized vectors, each weighted by its
corresponding coefficient. Then, we `2-normalize ψ0(X)
over its frequency axis. The norms computed in this stage
are independent of δ, so the video feature vector ψ0(X) can
be normalized once and then shifted multiple times using
trigonometric polynomials to compute the final scores.

Figure 2 reports an example of the scores obtained at
different time shifts for two matching videos. As it can be
seen, long periods (T = 651s) fail to provide enough local-
ization accuracy, while shorter periods (T = 16.9s) provide

good localization but generate frequent false positives. The
sum of the scores obtained with different periods increases
localization accuracy while avoiding false positives.

3.2. Loss function

Ideally, kernel scores Kδ(·, ·) should be higher for over-
lapping videos and lower for non overlapping videos, so
to enhance the retrieval of similar or overlapping videos.
At the same time, the layer should perform a precise lo-
calization, which corresponds to requiring that the kernel
scores for a pair of overlapping videos are higher near to
the ground truth alignment point, and lower for incorrect
alignment points.

Given a triplet of videos (X0,X+,X−), where X+

overlaps with X0 and X− does not overlap with X0, we
define a retrieval loss that enforces kernel scores to be glob-
ally higher for the overlapping pair than for the non over-
lapping pair. This is done by placing a margin loss between
the maximum of the kernel scores obtained when evaluating
(X0,X+) and (X0,X−):

Lr = max (0,mr +K∗(X0,X−)−K∗(X0,X+)) , (13)

where K∗(X,X′) is the maximum of Kδ(X,X′),
i.e. K∗(X,X′) = maxδ Kδ(X,X′), and mr is the retrieval
margin.

To enforce a correct localization inside the overlapping
pair, instead, we define a localization loss which imposes a
margin between the kernel scores in a neighborhood of the
correct alignment point δ∗, and the kernel scores outside the
neighborhood:

Ll = max(0,ml+KN (δ∗)(X0,X+)−KO(δ∗)(X0,X+)),
(14)

where ml is the localization margin, δ∗ is the ground
truth alignment point, KN (δ∗)(X0,X+) is the maximum
of kernel scores in a neighborhood [δ∗ − r, δ∗ + r], and
KO(δ∗)(X0,X+) is the maximum of kernel scores outside
the neighborhood r.
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Figure 3: Fraction of correct alignments as a function of the
acceptance threshold for several combinations of periods.

3.3. Learning with temporal proposals

To learn the parameters of the layer, we exploit a dataset
of video sequences aligned on a global timeline. In this
setting, we know which sequences overlap with which se-
quences, and we can build suitable training triplets.

Overlapping sequences can be very long and using the
entire sequences would result in a reduction of the mini-
batch size (because of GPU memory limitations). On the
other hand, using very short snippets would downgrade the
recognition performance of the layer and create inconsisten-
cies between the train and test phases. The length of training
snippets should be related to the longest period in P . In our
case, we build training triplets made of 500 frames snippets
(which at 15 fps amounts to 33.3 s).

To speed up convergence, we perform negative mining.
At each epoch, we build a training triplet for each pair of
overlapping videos contained in the dataset. The X0 snip-
pet is sampled randomly from one of the two videos, while
the matching snippet X+ is obtained by randomly sampling
a sequence from the other video, with at least a 75% over-
lap with X+. In this way, we guarantee that the ground truth
alignment point is random, and that coefficients of long pe-
riods can be properly learned. To select a hard negative
X−, we sample a random snippet from 20 videos which do
not overlap with X0 and X+, and select the one having the
highest K∗(X0, ·) for the current set of weights.

3.4. Multiple period design

The choice of the periods in P influences both localiza-
tion and recognition, as well as the maximum video length
the network can process. When summing two periodic sig-
nals with periods T1 and T2, the resulting signal is periodic
with period T1 ·T2/gcd(T1, T2), where gcd(·, ·) is the great-
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Figure 4: Comparison between a cross-correlation kernel,
the temporal kernels proposed in the paper by Poullot et
al. [26] and those learned in LAMV.

est common divisor. To increase the periodicity of Kδ(·, ·)
while preserving a sufficient choice between short and long
periods, periods in P are conveniently selected to be rela-
tively prime. In this case, the period ofKδ(·, ·) is

∏
Ti∈P Ti.

To design the set of periods, we run a coarse grid search
on the Madonna dataset for video alignment. Since no fea-
ture learning is involved, findings can be applied to other
video alignment datasets. Starting with a single long period
(T = 14653 frames, equal to 977s) sufficient to cover the
longest video in the dataset, we subsequently add shorter
and relatively prime periods, by approximately scaling with
a factor of 1.5, and test all combinations.

Figure 3 reports the localization accuracy obtained when
matching each sequence in the dataset to the rest of the
database. Given a query, we use the maximum of kernel
scores K∗δ(·, ·) as a global similarity score to sort the re-
maining videos in the database, and then select the offset
with the maximum score to compute the localization error.

Starting from the longest period, as shorter periods are
added, the localization accuracy increases monotonically
(solid lines). On the other hand, this increases the size of
the final descriptor, so we investigate the choice of a subset
of periods. Using only short periods leads to precise local-
ization and insufficient recognition (an example is reported
in dashed line), while a combination of short and medium
long periods provides the same performance at a fraction of
the size (solid line with markers). In the rest of the experi-
ments, we will use this combination of four periods.



Dataset # videos # hours Task
Madonna 165 14.3 aligning/matching
Climbing 89 6.3 aligning
VCDB 528 27 copy detection
VCDB + 100k 100,528 2,000 copy detection
VCD 1,541 6.3 copy detection
YFCC100M 787,000 8,081 training
EVVE 2,995 166 event instance

Table 1: Characteristics of the datasets.

Discussion Figure 4 compares the temporal kernels learned
by our procedure on the Madonna dataset (further details
are provided in Sec. 4), with those employed in TMK [26]
and with a cross-correlation kernel. We report the cross-
correlation kernel using the longest period of TMK, and for
an increasing number of frequencies. For m = 64 this has
the same size as the TMK and our descriptor. While the
limited number of frequencies induces of oscillations in the
cross-correlation kernel, TMK avoids this phenomenon by
using Von Mises kernels which have flat responses out of
the target bandwidth. Kernels learned by LAMV, in con-
trast, have shorter periods and stronger higher-frequency
coefficients, which experimentally shows to be beneficial
for matching and localization.

4. Experiments
We assess the performance of the proposed method on

three settings: temporal video alignment, video copy de-
tection and event retrieval. All can be casted as joint re-
trieval and localization tasks, in which given a query video
we want to retrieve overlapping videos, and precisely local-
ize the query with respect to retrieved videos. In the case of
temporal video alignment, the same action is recorded from
different cameras, while in video copy detection the trans-
formation matching videos is limited to 2D geometric and
photometric distortions. In event retrieval, finally, the same
event is captured in different videos which do not necessar-
ily overlap, making this a more high level context.

4.1. Datasets

Table 1 summarizes the datasets we use. The Madonna
dataset [7] clips are decomposed in segments, and the seg-
ments are temporally aligned on a common timeline. The
image matching involves challenging viewpoint changes
and wildly different frame representations. To build train
and test splits, we identify the connected components inside
the dataset (i.e. sets of sequences that overlap temporally)
and build five folds which do not cross different connected
components. We then use five-fold evaluation on these, and
evaluate the fraction of accurately aligned videos. Similar
to Madonna, the Climbing dataset [7] contains 89 aligned
videos from a rock climbing session. It features only one

connected component, therefore we use it only for testing.

The VCDB dataset for copy detection [19] consists of clips
from sharing sites. They are all copies, possibly partial, of
one of 30 source clips (Kennedy assassination, Titanic fly
scene, etc.). The manual annotation gives the exact extent
of the overlapping part between each pair of the clips. Most
clips are quite easy to match automatically, but there are
also difficult transforms like large overlays or film-from-
screen copies. For evaluation, each clip is matched with all
the remaining, and a segment-level version of precision and
recall is computed, as defined in [19]. An additional set of
100k distractors is also provided by the same authors.

The EVVE dataset [28] contains clips that illustrate one
out of 13 “events”. The events can be news events (Flood in
Thailand), or an event occurring at a specific location (Wed-
ding of Kate and William), or a re-occurring event (eruption
of the Stokkur geyser). The depictions can be exactly the
same (for example, for the wedding, there is a single offi-
cial video), or slightly different (different views of the same
concert), or just have a common topic (the flood) that is hard
to match visually. The evaluation is done with a retrieval
protocol: there is a query/database split of the dataset and
the result is evaluated in terms of mean average precision.

The YFCC100M [29] dataset is a dataset that contains
800,000 videos, whose annotations we ignore. We use it
as a background set for unsupervised training.

Finally, VCD is a synthetic video copy dataset that we gen-
erated for training our layer on vido copy detection and
event retrieval. We combined pairs of videos from from
YFCC100M [29]. One of the videos is used as foreground
and inserted in the other, used as background. The fore-
ground video is clipped to a few seconds, resized and trans-
formed geometrically (rotation, perspective transform, etc.)
and photometrically (convert to gray, low-quality encoding,
etc.) in various random ways. The ground-truth alignment
is recorded. The data and alignment is used to train the
alignment quality on an independent dataset. We split the
dataset in two equal parts for training and validation.

4.2. Implementation details

The video clips are decoded at a fixed frame rate of
15 fps. As frame descriptors, we employ MultiVLAD
whitened descriptors [28] and vanilla RMAC [31]. RMAC
is a pooling layer that extracts bounding boxes from an ar-
bitrary activation map in a CNN stack, and pools them into
a fixed-size vector. The CNN can be fine-tuned [12], but we
found that a pre-trained CNN works just as well in a context
where the type of images to match is not known in advance.
RMAC requires an unsupervised training phase (to find the
PCA matrix), that we train on YFCC100M [29]. In prelim-
inary experiments, we found that extracting RMAC from
the 29th activation map of a Resnet-34 [15] gives the best



@ 0.1s @ 1s @ 10s
Frame descriptor is MVLAD

CTE (m = 16) 9.6 14.3 14.8
CTE (m = 64) 16.1 35.7 36.5
TMK [26] 11.7 43.5 65.2
LAMV, freq norm. 32.3 67.4 71.3
LAMV, Ṽ norm. 40.0 74.8 76.1
LAMV, Ṽ + freq norm. 47.3 84.7 86.0

Frame descriptor is RMAC
CTE (m = 16) 14.0 33.8 41.0
CTE (m = 64) 22.1 51.4 55.0
TMK [26] 7.7 38.7 73.4
LAMV, freq norm. 28.7 57.8 66.1
LAMV, Ṽ norm. 33.0 68.7 73.0
LAMV, Ṽ + freq norm. 39.6 76.1 82.9

@ 0.1s @ 1s @ 10s
Frame descriptor is MVLAD

CTE (m = 16) 0.0 18.0 32.6
CTE (m = 64) 4.5 37.1 47.2
TMK [26] 2.2 16.9 38.2
LAMV, freq norm. 13.5 32.6 41.6
LAMV, Ṽ norm. 19.1 51.7 61.8
LAMV, Ṽ + freq norm. 20.2 52.8 61.8

Frame descriptor is RMAC
CTE (m = 16) 4.4 10.1 21.3
CTE (m = 64) 7.9 24.7 29.2
TMK [26] 0.0 6.7 32.6
LAMV, freq norm. 7.9 19.1 25.8
LAMV, Ṽ norm. 6.7 33.7 40.1
LAMV, Ṽ + freq norm. 6.7 34.8 42.7

Table 2: Evaluation on the Madonna (left) and Climbing (right) datasets for temporal video alignment. The evaluation
measure the percentage of queries localized better than a threshold (0.1s, 1s, 10s).

F1 score
Temporal Hough voting (SIFT+BoV) [19] 55.0
Temporal network (SIFT+BoV) [19] 60.0
Temporal network (AlexNet) [20] 65.0
TMK (RMAC) [26] 67.4
LAMV, freq norm. 62.8
LAMV, Ṽ norm. 60.0
LAMV, Ṽ + freq norm. 68.7

Table 3: Evaluation on the VCDB dataset for video copy
detection. The evaluation measure is the maximum F1 score
on segment-level precision and recall measures [20].

matching results, so we keep this setting throughout. We
also tested with C3D features [32]. The localization and re-
trieval accuracy was not satisfactory with these techniques.

We build mini-batches with 128 triplets. We combine the
retrieval loss Lr and the localization loss Ll, respectively,
with weights 1/4 and 3/4. The retrieval margin mr is set to
0.01, and the localization margin ml to 0.001. The radius r
is set to 1s. We train the network using SGD with Nesterov
momentum 0.9 and a learning rate of 0.001.

The set of periods P is set to {9767, 2731, 1039, 253},
which, in seconds, correspond to {651s, 182s, 69s, 17s}.
When computing the TMK and the LAMV descriptor, the
number of frequencies M is always set to 16, so to have
comparable descriptor sizes.

4.3. Experimental results

Video alignment. We assess the localization and retrieval
performances of our model on temporal video alignment by
learning on Madonna with five-folds evaluation, and using
MVLAD and RMAC descriptors. For each fold we use each
sequence in the test set as query against the remaining se-

quences in the same set. As in Section 3.4, we use the max-
imum of kernel scores to sort the set, and then select the off-
set with maximum score from the first retrieved sequence.

We compare LAMV against our reimplementations of
TMK [26] and CTE [28] with 16 and 64 frequencies. The
size of our descriptor is equal to that of TMK and of CTE
with 64 frequencies. Table 2 reports the localization er-
rors: our model attains the best localization accuracy using
both descriptors, both for low and high localization errors in
comparable settings. To validate the two stage normaliza-
tion proposed in Section 3.1, we also show the performance
of LAMV when applying both or only one of the two nor-
malizations. Using the combined normalization helps to lo-
calize videos with greater accuracy, and to enhance the re-
trieval capabilities of the layer, as testified by the increased
localization at higher thresholds.

We investigate the generality of the models learned for
temporal video alignment by testing each of them on the
Climbing dataset, which contains a different scenario. Av-
eraged results are reported in Table 2 (right). Our method
obtains a higher localization accuracy and retrieval perfor-
mances when compared to the same baselines, and the ef-
fectiveness of the two-step normalization is confirmed also
in this setting. In Figure 5 we report a sample of challeng-
ing sequences taken from different point of views that are
correctly aligned by our method.

Video copy detection. For video copy detection, we train
on VCD using RMAC features, which show good invari-
ance to copy detection transformations, and test on the
recent VCDB dataset. Results are reported in Table 3.
We compare with our reimplementation of TMK, and with
three state of the art proposals for copy detection: the tem-
poral Hough voting and the temporal network proposed
in [19] on local SIFT descriptors, and temporal network us-



Figure 5: Examples of a sequence correctly aligned by LAMV on the Climbing dataset. Each column corresponds to
temporally aligned frames (2 frames per second are represented).

Method mean mAP per category
TMK [26] 51.6 65.9 37.5 13.2 43.9 36.3 28.7 22.6 14.4 16.8 29.7 23.6 86.2 65.9
LAMV 53.6 71.5 38.3 15.8 46.1 38.7 27.7 24.7 13.8 22.2 27.3 27.3 90.8 69.1
LAMV + QE 58.7 83.7 50.0 12.6 58.8 45.5 34.3 26.7 14.2 23.0 29.3 21.6 95.0 77.6

Table 4: Evaluation for event retrieval (mAP on EVVE). The ordering of categories is the same as in the EVVE paper [28].

Method Localization mAP
Frame descriptor is MVLAD

MMV [28] 33.4
CTE [28] X 35.2
Stable hyperpooling [6] 36.3
TMK [26] X 33.5

Frame descriptor is RMAC
Mean RMAC 52.9
TMK [26] X 51.6
LAMV, freq norm. X 53.5
LAMV, Ṽ norm. X 51.9
LAMV, Ṽ + freq norm. X 53.6
CGA [11] (AlexNet+ResNet) 52.3

Average query expansion (N1 = 10)
Stable hyperpooling [6] (MVLAD) 38.9
CGA [11] (AlexNet+ResNet) 58.5
LAMV (RMAC) X 58.7

Table 5: Comparison with the state of the art for event
retrieval (mAP on EVVE).

ing AlexNet features [20]. Temporal Hough voting aligns
matched frames by means of a temporal Hough transform,
while the temporal network uses a network flow optimiza-
tion strategy. They both require to store frame-level descrip-
tors for matching videos. LAMV attains the best F-Score
reported on this dataset, and features a fixed-size video de-
scriptor, independent on the video length. When testing
with the large number of distractors from the VCDB+100K
set, however, we observed that the performance of the tem-
poral network [20] is still higher (58.9 vs 49.3 F1), even
though LAMV outperforms TMK also in this setting (49.3
vs 35.5 F1).

Event retrieval. Finally, we apply our approach on
event retrieval. We compare against the Mean-MultiVLAD
(MMV), obtained by averaging and `2-normalizing Multi-
VLAD frame descriptors, CTE [28], Stable hyper-

pooling [6] and the recent Counting Grid Aggregation
(CGA) [11]. LAMV, CTE and TMK are able to provide a
good localization in addition to retrieval, the others can not.
To factor out the impact of the raw frame descriptor, we also
report the values obtained by using the `2-normalized mean
RMAC descriptor, and run our reimplementation of TMK
on RMAC features. As shown in Table 5, our method out-
performs all the baselines it has been compared to, includ-
ing CGA and TMK. We also evaluate the performance of
LAMV when using average query expansion (AQE) [6]. In
this setting, the top N1 results are averaged and then to pro-
duce an augmented query, which is then used for retrieval.
Overall, our methods attains the best result reported on this
dataset without query expansion and with AQE.

End-to-end training and performance. We tested end-
to-end training of the architecture. In practice it did not
give a significant improvement. This observation is com-
mon with videos, and can be explained by (a) the lack of
real data for these tasks (feature learning is limited with
artificially copied sequences), and (b) by the structure of
TMK and RMAC which creates complex path of gradients,
as also observed in prior works [12]. The matching, for each
δ hypothesis, requires the computation of an inner product
between frame-level features, which is comparable to CTE.
In terms of memory consumption, LAMV is |P| = 4 times
larger than CTE if using the same number of frequencies,
but provides a significant localization accuracy boost.

5. Conclusion

We presented a learnable descriptor based on temporal
match kernels. It can be learned with a triplet loss func-
tion designed to improve its performance when comparing
and temporally aligning videos. Experimental results, con-
ducted on temporal video alignment, video copy detection
and event retrieval, show that our approach beats the state
of the art on all three tasks with a significant margin.
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