This work reports the results of the structural study of three representative chrysotile samples of different provenance (Canadian UICC, and Italian Balangero and Valmalenco). Chemical composition was determined using EMPA and TG data. An innovative wet cryo-milling procedure was used to powder the flexible and durable chrysotile fibres. X-ray powder diffraction patterns were collected using both conventional and nonconventional sources. Collected data were used for Rietveld structural refinements and results were compared with available literature data. The three samples display similar structure models, although small differences were detected in the position of the oxygen atoms. Both the structural refinements and spectroscopic investigations confirms that Fe 2+ and Fe 3+ atoms in chrysotile are located in the octahedral cavities only, substituting for Mg 2+ . Regarding the atom coordinates, UICC chrysotile is the closest to the model reported by Falini et al. (2004). About the lattice parameters, the Valmalenco chrysotile is the closest, if compared with the Balangero and UICC, to both the model proposed by Whittaker (1956a,b) and Falini et al. (2004). This work is intended as a basis for subsequent studies aimed at understanding the toxicity of these mineral fibres.

The crystal structure of mineral fibres. 1. Chrysotile / Pollastri, Simone; Perchiazzi, Natale; Lezzerini, Marco; Plaisier, Jasper R.; Cavallo, Alessandro; Chiara Dalconi, Maria; Bursi Gandolfi, Nicola; Gualtieri, Alessandro F.. - In: PERIODICO DI MINERALOGIA. - ISSN 0369-8963. - 85:3(2016), pp. 249-259. [10.2451/2016PM655]

The crystal structure of mineral fibres. 1. Chrysotile

Simone Pollastri;Alessandro F. Gualtieri
2016

Abstract

This work reports the results of the structural study of three representative chrysotile samples of different provenance (Canadian UICC, and Italian Balangero and Valmalenco). Chemical composition was determined using EMPA and TG data. An innovative wet cryo-milling procedure was used to powder the flexible and durable chrysotile fibres. X-ray powder diffraction patterns were collected using both conventional and nonconventional sources. Collected data were used for Rietveld structural refinements and results were compared with available literature data. The three samples display similar structure models, although small differences were detected in the position of the oxygen atoms. Both the structural refinements and spectroscopic investigations confirms that Fe 2+ and Fe 3+ atoms in chrysotile are located in the octahedral cavities only, substituting for Mg 2+ . Regarding the atom coordinates, UICC chrysotile is the closest to the model reported by Falini et al. (2004). About the lattice parameters, the Valmalenco chrysotile is the closest, if compared with the Balangero and UICC, to both the model proposed by Whittaker (1956a,b) and Falini et al. (2004). This work is intended as a basis for subsequent studies aimed at understanding the toxicity of these mineral fibres.
2016
85
3
249
259
The crystal structure of mineral fibres. 1. Chrysotile / Pollastri, Simone; Perchiazzi, Natale; Lezzerini, Marco; Plaisier, Jasper R.; Cavallo, Alessandro; Chiara Dalconi, Maria; Bursi Gandolfi, Nicola; Gualtieri, Alessandro F.. - In: PERIODICO DI MINERALOGIA. - ISSN 0369-8963. - 85:3(2016), pp. 249-259. [10.2451/2016PM655]
Pollastri, Simone; Perchiazzi, Natale; Lezzerini, Marco; Plaisier, Jasper R.; Cavallo, Alessandro; Chiara Dalconi, Maria; Bursi Gandolfi, Nicola; Gualtieri, Alessandro F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1152849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact