We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.

On generalized boundary value problems for a class of fractional differential inclusions / Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 20:6(2017), pp. 1424-1446. [10.1515/fca-2017-0075]

On generalized boundary value problems for a class of fractional differential inclusions

Benedetti, Irene;OBUKHOVSKII, VALERI;Taddei, Valentina
2017

Abstract

We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.
20
6
1424
1446
On generalized boundary value problems for a class of fractional differential inclusions / Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 20:6(2017), pp. 1424-1446. [10.1515/fca-2017-0075]
Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Benedetti-Obukhovskii-Taddei3.pdf

embargo fino al 01/01/2019

Descrizione: Articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 947.81 kB
Formato Adobe PDF
947.81 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1152552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact