We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.
On generalized boundary value problems for a class of fractional differential inclusions / Benedetti, Irene; Obukhovskii, Valeri; Taddei, Valentina. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1311-0454. - 20:6(2017), pp. 1424-1446. [10.1515/fca-2017-0075]
On generalized boundary value problems for a class of fractional differential inclusions
Benedetti, Irene;OBUKHOVSKII, VALERI;Taddei, Valentina
2017
Abstract
We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.File | Dimensione | Formato | |
---|---|---|---|
Benedetti-Obukhovskii-Taddei3.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
947.81 kB
Formato
Adobe PDF
|
947.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris