In this contribution, we consider edge-wave propagating in a thin elastic semiinfinite plate which is bilaterally supported by a homogenenous isotropic elastic half-space. The problem is formulated in terms of a eigenproblem constituted by a system of five linear PDEs in the plate transverse displacement and in the scalar and vector elastic potentials subject to mixed boundary conditions accounting for plate-fundation displacement continuity under the plate and zero normal stress outside. Zero tangential stress is envisaged throughout. The problem could be reduced to an inhomogenenous Wiener-Hopf functional equation in terms of the half-space surface displacement and of the plate-to-fundation contact pressure only. The kernel function is analyzed and the Rayleigh wave speed is obtained together with a novel dispersion equation. Finally, kernel factorization is performed.

On the edge-wave of a thin elastic plate supported by an elastic half-space / Nobili, A.; Kaplunov, J.; Radi, E.; Tarantino, A. M.. - 1:(2017), pp. 279-291. ((Intervento presentato al convegno AIMETA 2017 tenutosi a Salerno, Italy nel September 4-7, 2017.

On the edge-wave of a thin elastic plate supported by an elastic half-space

Nobili A.;Kaplunov J.;Radi E.;Tarantino A. M.
2017

Abstract

In this contribution, we consider edge-wave propagating in a thin elastic semiinfinite plate which is bilaterally supported by a homogenenous isotropic elastic half-space. The problem is formulated in terms of a eigenproblem constituted by a system of five linear PDEs in the plate transverse displacement and in the scalar and vector elastic potentials subject to mixed boundary conditions accounting for plate-fundation displacement continuity under the plate and zero normal stress outside. Zero tangential stress is envisaged throughout. The problem could be reduced to an inhomogenenous Wiener-Hopf functional equation in terms of the half-space surface displacement and of the plate-to-fundation contact pressure only. The kernel function is analyzed and the Rayleigh wave speed is obtained together with a novel dispersion equation. Finally, kernel factorization is performed.
4-set-2017
AIMETA 2017
Salerno, Italy
September 4-7, 2017
1
279
291
Nobili, A.; Kaplunov, J.; Radi, E.; Tarantino, A. M.
On the edge-wave of a thin elastic plate supported by an elastic half-space / Nobili, A.; Kaplunov, J.; Radi, E.; Tarantino, A. M.. - 1:(2017), pp. 279-291. ((Intervento presentato al convegno AIMETA 2017 tenutosi a Salerno, Italy nel September 4-7, 2017.
File in questo prodotto:
File Dimensione Formato  
AIMETA_2017_proceedings_n_1 Nobili.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 160.94 kB
Formato Adobe PDF
160.94 kB Adobe PDF Visualizza/Apri
Aimeta 2017 Nobili.pdf

accesso aperto

Descrizione: sommario
Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 23.99 kB
Formato Adobe PDF
23.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1150972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact