In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.

Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling / Giarré, L.; Argenti, F.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 355:3(2018), pp. 1493-1511. [10.1016/j.jfranklin.2017.12.009]

Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling

L. GIarré
;
2018

Abstract

In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.
2018
9-gen-2018
355
3
1493
1511
Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling / Giarré, L.; Argenti, F.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 355:3(2018), pp. 1493-1511. [10.1016/j.jfranklin.2017.12.009]
Giarré, L.; Argenti, F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0016003218300036-main.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
POST_PRINT_j.jfranklin.2017.12.009.pdf

Open access

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1150938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact