In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.
Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling / Giarré, L.; Argenti, F.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - (2018), pp. 1493-1511.
Data di pubblicazione: | 2018 |
Data di prima pubblicazione: | 9-gen-2018 |
Titolo: | Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling |
Autore/i: | Giarré, L.; Argenti, F. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jfranklin.2017.12.009 |
Rivista: | |
Pagina iniziale: | 1493 |
Pagina finale: | 1511 |
Codice identificativo ISI: | WOS:000425498200024 |
Codice identificativo Scopus: | 2-s2.0-85040697166 |
Citazione: | Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling / Giarré, L.; Argenti, F.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - (2018), pp. 1493-1511. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris