In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.
Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling / Giarré, L.; Argenti, F.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 355:3(2018), pp. 1493-1511. [10.1016/j.jfranklin.2017.12.009]
Mixed ℓ2 and ℓ1-norm regularization for adaptive detrending with ARMA modeling
L. GIarré
;
2018
Abstract
In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed ℓ1/ℓ2-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0016003218300036-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
POST_PRINT_j.jfranklin.2017.12.009.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris