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Abstract

In this paper, the problem of detrending a time series and/or estimating a

wandering baseline is addressed. We propose a new methodology that adap-

tively minimizes different regularized cost functions by introducing an ARMA

model of the underlying trend. Mixed `1/`2-norm penalty functions are taken

into consideration and novel RLS and LMS solutions are derived for the model

parameters estimation. The proposed methods are applied to typical trend es-

timation/removal problems that can be found in the analysis of economic time

series or biomedical signal acquisition. Comparisons with standard noncausal

filtering techniques are also presented.

Keywords: Trend estimation, regularization, sparsity, ARMA models, RLS,

LMS

1. Introduction

The problem of estimating an underlying trend in time series arises in a vari-

ety of disciplines, including macroeconomics [1][2], geophysics, financial analysis

[3], social sciences, biological and medical sciences [4], environmental measure-

ments modelling [5], or it can be also found in detecting structural changes in

time series [6].
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Detrending methods often rely upon optimization of a given functional that

may include regularization, or penalty, terms. Such penalty functions are chosen

in order to induce a desired behavior or properties into the solution. For exam-

ple, if the regularization term is based on `2-norm a minimum energy solution

is pursued. Such a solution is effective in many applications and is also conve-

nient from a mathematical standpoint. Regularization based on the `1-norm,

instead, induces a sparse solution and has become popular, with the growing

interest in sparse representation modeling and compressed sensing, in several

fields including statistics [7], signal processing [8] and machine learning [9].

Examples of regularization-based methods for detrending can be found in

the field of macroeconomic time series analysis, where the Hodrick–Prescott

algorithm [1] is the classically used. In this approach, a `2-norm constraint

on the second derivative of the unknown trend is imposed. The method has

been recently revisited in [10], where detrending is achieved by substituting, in

the penalty function, the `2-norm with the `1-norm. In this way, the filtering

method induces piecewise linear trend estimates and, therefore, is well suited to

analyze time series characterized by an underlying trend satisfying such a model.

Other examples of `2-norm regularization application arise in medical sciences.

For instance, in electrocardiogram (ECG) acquisitions, one of the major dis-

turbances [11] is the baseline wandering (BW), caused by patient movement

and respiration, that appears as a random variation of the signal trend. An

`2-norm regularization approach to BW removal, with first order derivative in

the penalty term, was proposed in [12]. Algorithms in [1][10][12] present filters

that are noncausal and can be used only offline.

In this paper, novel adaptive detrending methods, using a regularization

approach, are proposed. The major difference with respect to the algorithms

presented in [1][10][12] is that the proposed methods are based on online min-

imization of a regularized cost function, that is adaptation is performed each

time a new sample of the signal is acquired instead than using a noncausal

approach in which the whole signal is stored and then processed. In order to

accomplish this task, the trend signal we would like to estimate is assumed to
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follow an auto-regressive moving-average (ARMA) model, whose parameters are

adaptively estimated via RLS or LMS techniques.

The problem is solved by using a general formulation of the regularized cost

function. In fact, it uses a mixture of both `1 and `2-norm penalty functions

and is able to cope with any order of the derivative of the trend. This unified

framework allows several advantages to be achieved: with a proper selection

of the weighting parameters, it includes the single `1 and `2-norm penalties as

particular cases, whereas the choice of different derivative orders allows various

models of the trend to be fit; furthermore, there are more degrees of freedom

to induce specific properties - depending on each individual set of data and

application - into the solution and the benefits of each single type of penalty

can be possibly pursued.

Basic features of the proposed algorithms are also their computational effi-

ciency and, thanks to the online implementation, the use of a limited amount

of memory, since only a small number of past and present samples is necessary.

Some partial results were preliminary presented in [13] and [14].

As to the use of the `1-norm, the proposed approach is different from sparse

systems estimation methods, where the penalty is directly imposed on the filter

coefficients vector, as in the LASSO algorithm, with application to compressive

sensing [15], network identification [16][17], sparse channel estimation [18][19],

and beamforming design [20].

The paper is organized as follows. In section 2, the cost functions used

for the regularization are defined. In section 3, the proposed ARMA modeling

of the trend is introduced. In section 4, the novel regularized LMS and RLS

solutions are derived. Experimental results, both for synthetic and real data,

are presented in Section 5, whereas some conclusions are drawn in Section 6.

2. Regularized least squares methods

Let y[k], k = 1, 2, . . . , n, be the acquired time series affected by a trend

q[k], k = 1, 2, . . . , n. It is assumed that q is a lowpass signal that introduces

slow variations (or trend) into the time series. The objective of a detrending
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algorithm is that of estimating q from y. In some applications, the purpose is just

the estimation of the trend, whereas in others it is considered as a disturbance

to be removed from the signal, so that y − q has the same shape of y, but a

constant baseline. Consider the following penalized mean square error problem

to estimate the trend:

q̂ = arg min
q
J(q) = arg min

q
{‖y − q‖22 + P(q)}, (1)

where y and q are n-length column vectors and ‖ · ‖p is the `p norm of a vec-

tor. The first term is a fidelity term between the acquired time series and the

unknown trend. The penalty term P(q) must be chosen in order to induce

smoothness on the signal q. Several choices can be made for P(q), according

also to a priori knowledge on the trend model. The choice of P(q) induces the

use of a specific solver. In this paper, we will analyze the following penalty

functions.

The `2-norm penalty P(q) is defined as

P(q) = P`2(q) = λ2‖∆dq‖22 (2)

where ∆ = 1−z−1 is the derivative operator (with z−1 denoting the unit delay);

d is the order of the difference operator, corresponding to a penalty based on

the dth order derivative; λ2 is a given positive constant. For d = 2, the solution

coincides with Hodrick-Prescott filtering [1]. It is apparent that constraining

the minimization with an `2-norm on the derivative of q induces a degree of

smoothness on the estimated trend.

The `1-norm penalty function is defined as

P(q) = P`1(q) = λ1‖∆dq‖1, (3)

It is well-known that a constraint on the `1-norm induces a sparse solution. For

example, if we choose d = 2 then a trend with a sparse second-derivative, that

is an approximately piecewise linear solution, is achieved.

A third choice for the penalty function is based on a mixed `2/`1-norm,

defined as

P(q) = P`12(q) = λ2‖∆d2q‖22 + λ1‖∆d1q‖1, (4)
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The aim of this study is finding low-complexity online solutions to the above

problems. One example of application is the implementation of baseline removal

algorithms on-board of wearable ECG devices, where the computational power

and available memory are limited. To achieve this purpose, the trend is supposed

to fit an ARMA model and solutions to the problem of estimating its parameters

from the observed signal, based on least means squares (LMS) and recursive least

squares (RLS) approaches, are proposed.

3. ARMA modeling of the trend

The regularization problems introduced in Section 2 have been solved by

assuming that the baseline (or trend) q can be obtained from the observed

signal y by means of an ARMA model. Assume that

Q(z) = F (z)Y (z) =
B(z)

A(z)
Y (z), (5)

where

B(z) =
M∑

k=0

bkz
−k,

A(z) = 1 +

N∑

k=1

akz
−k,

(6)

with M and N the orders of the MA and AR components of the model, respec-

tively, and bk, k = 0, 1, . . . ,M , and ak, k = 1, . . . , N , their parameters. Thus,

the trend signal is given by

q[n] =
M∑

k=0

bky[n− k]−
N∑

k=1

akq[n− k] = ϕT [n]θ, (7)

where

ϕ[n] =
[
y[n] . . . y[n−M ] q[n− 1] . . . q[n−N ]

]T

θ =
[
b0 . . . bM − a1 . . . − aN

]T
,

(8)

In the above expressions, we omitted the presence of additive noise terms.
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In order to express the penalty functions, let the causal dth-order difference

operator ∆d be expressed by

∆dq = hd ∗ q, (9)

where hd is the impulse response of a causal filter having d+ 1 coefficients. For

example, if d = 1 then h1 = {1,−1}, whereas for d = 2 we have h2 = {1,−2, 1}.
Thus, the nth sample of the signal ∆dq, used in the penalty functions defined

in Section 2, is given by

∆dq[n] = hTd




q[n]

q[n− 1]

· · ·
q[n− d]




= hTd




ϕT [n]

ϕT [n− 1]

· · ·
ϕT [n− d]



θ = ψTd [n]θ, (10)

where (7) has been used and

ψd[n] =
[
ϕ[n] ϕ[n− 1] · · · ϕ[n− d]

]
hd. (11)

In order to find an adaptive and computationally low-cost solution to the

regularization problems, recursive least square and least mean square algorithms

can be devised. The online estimated vector of parameters θ̂[n] is then used to

achieve an estimation of the trend at time n as

q̂[n] = ϕT [n]θ̂[n]. (12)

4. LMS and RLS solutions

In this section, the adaptive least mean square (LMS) and recursive least

squares (RLS) solutions to the trend estimation problem are described. The

approach is formulated for the mixed `1/`2-norm penalty function, which com-

prises the solutions to the `2 and `1 problems as particular cases.

By using the problem statement in (1) and (4) and the definitions (7) and

(10), derived from the ARMA modeling of the trend as described in Section 3,
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the function to be minimized can be expressed as

J(q) = ‖y − q‖22 + λ2‖∆d2q‖22 + λ1‖∆d1q‖1

=

n∑

i=0

(y[i]− ϕT [i]θ)2 + λ2

n∑

i=0

(ψTd2 [i]θ)2 + λ1

n∑

i=0

|ψTd1 [i]θ|

= J1(θ)

(13)

For mathematical convenience, the two quadratic terms in (13) can be grouped

together. Consider the following vectors

z[i] =
[
y[i] 0

]T
, z[i] ∈ R2, (14)

Υ[i] =
[
ϕ[i]

√
λ2ψd2 [i]

]
, Υ[i] ∈ R(M+N+1)×2, (15)

ε[i] = z[i]−ΥT [i]θ, ε[i] ∈ R2. (16)

Thus, (13) can be rewritten as

J1(θ) =

n∑

i=0

‖ε[i]‖22 + λ1

n∑

i=0

|ψTd1 [i]θ| (17)

It is apparent that, for λ1 = 0, the cost function in (17) coincides with that of

the P`2(q) problem, whereas, for λ2 = 0, the second element of the vector ε[i]

is identically null and the cost function collapses to that of the P`1(q) penalty

problem.

4.1. LMS solution

The classical LMS solution [21] coincides with a steepest descent algorithm

where the cost function is simply the last observed error (without the presence

of any regularization term), that is the first term in (13), given by

JLMS(θ) = (y[i]− ϕT [i]θ)2 (18)

Regularized versions of the LMS algorithm have been introduced in order to

promote some properties into the solution. In [22], for example, an `1-norm

penalty function is used to promote sparsity into the adaptive filter coefficients.

In this study, in which sparsity of the sequence ∆d1q is pursued, the following
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regularized LMS (rLMS) cost function, coinciding with the last term in (17), is

used:

JrLMS(θ) = ‖ε[i]‖22 + λ1|ψTd1 [i]θ|. (19)

From the observation of (19), we can see that, unlike [22], the `1-norm is not

applied to the parameter vector, but rather the cost function depends on the

absolute value of a linear combination of the parameters to be optimized. The

rule that minimizes (19) at each step coincides with the following parameter

vector updating:

θ̂[i] = θ̂[i− 1]− µ

2
∇
[
‖ε[i]‖22 + λ1|ψTd1 [i]θ̂[i− 1]|

]

= θ̂[i− 1] + µΥ[i](z[i]−ΥT [i]θ̂[i− 1])− µ

2
∇
[
λ1|ψTd1 [i]θ̂[i− 1]|

]
,

(20)

where the time index has been added to θ̂ and µ is the updating gain. As can

be seen, ∇JrLMS(θ) has been evaluated by using the knowledge of θ̂[i− 1].

Following [23, 24, 25], where adaptive online estimators for sparse param-

eter vectors are derived, hereafter we use a subgradient analysis, which offers

a substitute for the gradient when the minimum of convex, nondifferentiable

functions [26] is searched. At any point where the convex function fails to be

differentiable, there exist possibly many valid subgradient vectors. According

to [25], we approximate it, at each step, with the subdifferential of the quantity

|ψTd1 [i]θ̂[i− 1]|, that is

∇|ψTd1 [i]θ̂[i− 1]| = sign(ψTd1 [i]θ̂[i− 1])ψd1 [i] (21)

Thus, substituting (21) into (20) and using (16) yields

θ̂[i] = θ̂[i− 1] + µΥ[i]ε[i]− µ1sign(ψTd1 [i]θ̂[i− 1])ψd1 [i], (22)

where µ1 = µλ1

2 .

4.2. RLS solution

In the classical recursive least squares algorithm, a forgetting factor is intro-

duced to build a cost function that gives more weight to the last errors between

the observed samples and the output of an adaptive filter.

8
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Consider now the signal model proposed in this paper and consider the

following cost function based on the observed samples of ε[i]:

JrRLS[n] =
1

2

n∑

i=1

αn−i‖ε[i]‖22, (23)

where α is the forgetting factor. The cost function in (23) has been denoted

as regularized RLS (rRLS) since, according to the definition of ε[i] in (16),

it embeds the `2-norm penalty. Note that with α = 1 the problem coincides

with that in (1) with the penalty P`2(q) as defined in (2). A solution to the

minimization problem of (23) can be found in [13].

In this paper, we generalize that result by adding a penalty derived from the

`1-norm of ∆d1q[n] and characterized by a forgetting factor as well. Thus, we

redefine JrRLS[n] as

JrRLS[n] =
1

2

n∑

i=1

αn−i‖ε[i]‖22 + λ1

n∑

i=1

αn−i|ψTd1 [i]θ|, (24)

where we used (10) to express ∆d1q[n].

By using (15) and (16) it can be shown that the gradient of JrRLS[n] can be

written as

∇JrRLS[n] = −
n∑

i=1

αn−iΥ[i]z[i] +
n∑

i=1

αn−iΥ[i]ΥT [i]θ + λ1

n∑

i=1

αn−i∇|ψTd1 [i]θ|

= −r[n] +R[n]θ + λ1g[n],

(25)

where

r[n] =
n∑

i=1

αn−iΥ[i]z[i] = αr[n− 1] + Υ[n]z[n] (26)

R[n] =
n∑

i=1

αn−iΥ[i]ΥT [i] = αR[n− 1] + Υ[n]ΥT [n] (27)

g[n] =
n∑

i=1

αn−i∇|ψTd1 [i]θ| = αg[n− 1] +∇|ψTd1 [n]θ|. (28)

Consider online updating of the parameters vector by adding a temporal index

to θ. The null-gradient condition yields

R[n]θ[n] = f [n], (29)

9
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where

f [n] = r[n]− λ1g[n] = αf [n− 1] + Υ[n]z[n]− λ1∇|ψTd1 [n]θ[n− 1]| (30)

Note that, for computational feasibility, we made f [n] dependent on θ[n− 1].

Taking (29) at time n− 1 and using (27) and (30) yields

(R[n]−Υ[n]ΥT [n])θ[n− 1] = f [n]−Υ[n]z[n] + λ1∇|ψTd1 [n]θ[n− 1]| (31)

Multiplying both sides of (31) by R−1[n] and using again (29) and (16) yields

θ[n] = θ[n− 1] +R−1[n]Υ[n]ε[n]− λ1R−1[n]∇|ψTd1 [n]θ[n− 1]| (32)

Let P [n] = R−1[n]. By applying the matrix inversion lemma to P [n] = (αR[n−
1] + Υ[n]ΥT [n])−1, the following recursive computation of P [n] from P [n − 1]

can be achieved [27]:

P [n] = α−1P [n− 1]− α−1κ[n]ΥT [n]P [n− 1], (33)

where

κ[n] = α−1P [n− 1]Υ[n](I2 + α−1ΥT [n]P [n− 1]Υ[n])−1. (34)

By using (33) and (34), the parameters update formula (32) becomes

θ[n] = θ[n− 1] + κ[n]ε[n]− λ1P [n]∇|ψTd1 [n]θ[n− 1]| (35)

and by using (21) we get

θ[n] = θ[n− 1] + κ[n]ε[n]− λ1P [n]sign(ψTd1 [n]θ[n− 1])ψTd1 [n] (36)

5. Experimental results

In this section, the results of some experimental tests carried out to eval-

uate the effectiveness of the proposed methods (implemented in Matlab) are

presented. The tests use both synthetic and real data.

In the following, we focus on two applications of our methods, namely, fi-

nancial time series trend estimation and biomedical signals (electrocardiograms,

10
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ECG) baseline wandering removal. In the former case, the trend is just the in-

formation we would like to extract from the observed data for economic analysis

purposes, whereas, in the latter problem, the trend is seen as a disturbance we

would like to remove in order to facilitate medical diagnosis. Another relevant

difference between the two cases is that, in some applications of ECG acqui-

sition (see, e.g., [28]), detrending may need to be performed in real-time so

that the algorithms should be fast and causal, while this could not be a strict

requirement for financial data. As to the baseline wandering problem several

methods and tools have been proposed in the literature, for instance: adaptive

filters [29], discrete wavelet transform [30], empirical mode decomposition [31],

quadratic variation reduction [32].

In this paper, the results achieved with the proposed methods are compared

with those obtained with the Hodrick-Prescott algorithm [1, 33] (referred to as

“HP” in the following) and the quadratic variation reduction (QVR) method [12]

(here implemented as noncausal LTI filtering [34] and referred to as “QVRLTI”

in the following). Both these approaches can be seen as particular cases of

the optimization problem in (1) with the choice of the `2-norm penalty func-

tion given in (2) and with derivative order equal to either two or one for the

Hodrick-Prescott and QVR algorithms, respectively. The major difference with

the proposed methods is that the Hodrick-Prescott and QVR algorithms use

both past and future samples to estimate the trend, so that, being noncausal,

they are not a feasible solution for real-time applications. On the other hand,

since they use a richer information, a better performance is expected and, there-

fore, they represent a good benchmark to validate our methods.

5.1. Synthetic data tests

In order to assess the performance of the proposed methods, synthetic signals

characterized by a synthetic trend are generated. Let q and x be the trend and

the no-trend signal, respectively, so that y = x + q is the observed signal. The

signals q and x have been generated so that y resembles as much as possible

typical realizations of either financial time series or ECG data. In order to

11
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evaluate the tracking capabilities of the proposed methods, some deterministic

waveforms (square and triangular periodic waves) have been also used for the

trend signal. In all the tests, the spectral occupancy of the superimposed trend

q partially overlaps with that of the no-trend signal x.

Since the trend is known, the implemented methods can be compared in

terms of the mean square error (MSE), defined as

MSE =
1

Nq

∑

n

(q[n]− q̂[n])2, (37)

where q is the synthetically generated trend, q̂ is its estimation obtained from

a trend estimation algorithm and Nq is their length. Adaptive algorithms are

evaluated at their convergence, i.e., the head portion of the trend was discarded.

The LMS algorithms proposed in the previous sections for the `2, `1 and

mixed `1/`2 norm penalties are denoted as LMS-L2, LMS-L1 and LMS-12, in

that order, whereas the RLS counterparts are denoted as RLS-L2, RLS-L1 and

RLS-12.

As to the selection of the parameters necessary to run the algorithms, we

made the following choices. The derivative order of the `1/`2-norm terms was

selected according to the assumed model of the trend: for instance, for a piece-

wise linear trend, a sparse second derivative (and therefore d1 = 2) is expected.

In some cases, the choice followed that of already proposed algorithms: for ex-

ample, in “HP” d2 = 2 and in “QVRLTI” d2 = 1. The selection of the weighting

parameters was instead based on experimental trial-and-test: for each method,

after choosing an interval of variation for the parameters λ1 and λ2, the mean

square error (MSE) between the true and estimated trend was computed on a

grid of values on those intervals; the values of the parameters giving rise to the

minimum MSE were selected.

5.1.1. Deterministic waveforms for the trend

Aim of these set of experiments is evaluating the tracking capabilities of the

proposed methods in response to piecewise constant and linear trends. In these

tests, the trend q is a periodic, either square or triangular, wave.

12
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Consider a periodic square wave with a changing amplitude and frequency.

The trend signal is composed of Nq = 32768 samples: in the first half, the

amplitude varies in (-2,2) and the period is 1280 samples; in the second half,

the amplitude varies in (-1,1) and the period is 640 samples. The no-trend

signal x is a stochastic process obtained by bandpass filtering a white process

distributed as N (0, 1). A portion of a realization of the observed signal y is

shown in Fig. 1.

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

samples # 10 4
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0
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8
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itu
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y
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Figure 1: Synthetic pseudo-random signal with superimposed square wave trend.

In Fig. 2, the true trend q and q̂, estimated by the proposed algorithms for a

particular realization, are presented. The results shown in Fig. 2 were obtained

with: order of the derivatives (see (4)) d1 = d2 = 1; orders of the ARMA model

(see (6)) M = 8 and N = 1; value of the updating gain in the LMS algorithms

µ = 5·10−5; value of the forgetting factor in the RLS algorithms α = 0.999. The

values of the regularizing constants for the RLS algorithm were set to λ2 = 25

for penalty P`2 , λ1 = 3 for penalty P`1 and λ2 = 15, λ1 = 3 for penalty P`12 ,

whereas for the LMS algorithms they were set to λ2 = 25 for penalty P`2 , λ1 = 8

for penalty P`1 and λ2 = 15, λ1 = 3 for penalty P`12 . The corresponding MSE

errors, evaluated by using (37) and averaged over fifty realizations, are reported
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Table 1: MSE values for square and triangular wave trends.

Trend RLS-L2 RLS-L1 RLS-12 LMS-L2 LMS-L1 LMS-12
square wave 0.0492 0.0524 0.0501 0.0314 0.0329 0.0312

triangular wave 0.0050 0.0042 0.0052 0.0047 0.0036 0.0038

in Table 1.
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Figure 2: Trends q̂ estimated with the proposed algorithms.

A periodic triangular wave was also used as synthetic trend. The no-trend

signal was generated in the same way as in the square wave case previously

described. A portion of a realization of the signal is depicted in Fig. 3. In the

algorithms, the derivative parameters were set to d2 = 1 and d1 = 2; the latter

was selected since the triangular wave possesses a sparse second derivative. The

values of the regularizing constants for the RLS algorithm were set to λ2 = 25

for penalty P`2 , λ1 = 3 for penalty P`1 and λ2 = 15, λ1 = 1 for penalty P`12 ,

whereas for the LMS algorithms they were set to λ2 = 30 for penalty P`2 , λ1 = 5

for penalty P`1 and λ2 = 15, λ1 = 3 for penalty P`12 . All the other parameters

were the same as in the square wave case. The trends estimated by the various

algorithms are shown, for one realization, in Fig. 4, while the corresponding

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

MSE errors are reported in Table 1.

Figures 2 and 4 show that the proposed algorithms are able to correctly

estimate the underlying trends. From Table 1, we can observe that best perfor-

mance depends on the type of signals, i.e., the use of P`2 and P`1 are beneficial

in the square and traingular wave cases, respectively, whereas the advantages of

using a mixed norm are not always manifest.
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Figure 3: Synthetic pseudo-random signal with superimposed triangular wave trend.

5.1.2. Stochastic waveform for the trend

We consider two different ways to generate a stochastic trend. The first

method creates a random piecewise linear trend, as suggested in [10], where

time series resembling economic data were aimed at. The second assumes the

trend to be a random lowpass signal as proposed in several papers on ECG

baseline wandering removal algorithms, e.g., [12][31].

The first method to create a synthetic stochastic trend aims at generating a

piecewise constant-slope signal according to the following expression:

q[n+ 1] = q[n] + v[n], (38)
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Figure 4: Trends q̂ estimated with the proposed algorithms.

where v[n] is the trend slope generated by a Markov chain, i.e., the slope remains

unchanged (v[n+ 1] = v[n]) with probability p, whereas, with probability 1− p,
a new slope value is generated from a uniform distribution on (−b, b). The

length of q was Nq = 20000 samples. The observed time series was achieved

by adding to the trend q a no-trend stochastic process obtained by bandpass

filtering a white process distributed as N (0, σx). In the simulations we used

b = 2, p = 0.01, and σx = 2.

The estimated trends are depicted in Fig. 5. These estimates were obtained

by setting the order of the ARMA model to M = 3 and N = 1 and derivative

orders to d2 = 1 and d1 = 2. The values of the regularizing constants for the

RLS algorithm were set to λ2 = 4 for penalty P`2 , λ1 = 3 for penalty P`1
and λ2 = 1, λ1 = 2.5 for penalty P`12 , whereas for the LMS algorithms they

were set to λ2 = 70 for penalty P`2 , λ1 = 140 for penalty P`1 and λ2 = 70,

λ1 = 10 for penalty P`12 . The MSE values obtained averaging fifty realizations

are reported in Table 2. To cope with the variability in the signal, the value of µ

was set to 10−7 in the LMS algorithms. As to the parameter λ used for the HP

and QVRLTI algorithm, the results presented here were obtained by choosing
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Table 2: MSE values for stochastic piecewise constant-slope trend.

RLS-L2 RLS-L1 RLS-12 LMS-L2 LMS-L1 LMS-12 HP QVRLTI
0.5283 0.4871 0.5006 0.5275 0.5659 0.5404 0.0374 0.3405

λ = 1600 and λ = 100 for the HP and the QVRLTI methods, respectively.
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Figure 5: Trends q̂ estimated with the proposed and HP algorithms.

A second dataset of synthetic signals was created to resemble the acquisi-

tions from an electrocardiograph. The synthetic baseline-free ECG signal x was

obtained by using the algorithm in [35] (a Matlab implementation of which is

available in PhysioNet [36]). The data were generated by setting the heart rate

to 60 bpm and the sampling frequency to fs = 256 Hz. White Gaussian noise

with standard deviation σn = 0.01 was also added. The output is an ECG-like

signal normalized between -0.4 and 1.2 mV.

A pseudo-random synthetic baseline (the trend signal q) was then added. It

was generated by lowpass filtering a white Gaussian process with a fourth-order

Butterworth filter having a 3-dB cutoff frequency set to a given value ft. The

amplitude of the baseline was adjusted so that its standard deviation σb was

equal to 0.5 mV.
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Table 3: MSE values for stochastic low-pass trend.

RLS-L2 RLS-L1 RLS-12 LMS-L2 LMS-L1 LMS-12 HP QVRLTI
0.0180 0.0271 0.0181 0.0290 0.0295 0.0291 0.0309 0.0204

The BW removal algorithms proposed in this paper were run by setting the

order of the ARMA model to M = 1 and N = 3 and the derivative orders

to d2 = 1 and d1 = 1. The values of the regularizing constants for the RLS

algorithm were set to λ2 = 90 for penalty P`2 , λ1 = 2 for penalty P`1 and

λ2 = 90, λ1 = 2 for penalty P`12 , whereas for the LMS algorithm were set to

λ2 = 80 for penalty P`2 , λ1 = 11 for penalty P`1 and λ2 = 70, λ1 = 1 for

penalty P`12 . The parameter λ from the HP and QVRLTI algorithms was set

to λ = 1600 and λ = 104, respectively.

In Table 3, the MSE values obtained in the case of ft = 0.4 Hz averaged

over fifty realizations of the pseudo-random baseline are reported. A portion of

a realization of the synthetic ECG signal is given in Fig. 6. In Fig. 7, examples

of BW removal, obtained with the RLS-12 and the QVRLTI algorithms, are

presented.
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Figure 6: Sinthetic ECG with synthetic baseline.
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Figure 7: BW removal results.

Table 4: MSE values for LMS algorithms varying the µ parameter.

µ LMS-L2 LMS-L1 LMS-12
5.e-5 0.0311 0.0333 0.0315
1.e-4 0.0290 0.0295 0.0291
5.e-4 0.0285 0.0366 0.0284
1.e-3 0.0282 0.0451 0.0282

From Tables 2 and 3, we observe only a slight (in most of the cases) degra-

dation of the proposed methods with respect to the HP and QVR methods.

Nonetheless, the underlying trend is well extracted by all the methods, as shown

in Fig. 5, or the BW removal is effective, as shown in Fig. 7.

In Table 4, the MSE values obtained for the LMS algorithms varying the

updating gains are shown. As can be seen, the average MSE is only slightly

dependent on the selected gains.

5.1.3. Convergence and complexity

Many tests have been carried out to ascertain the convergence of the pro-

posed methods, especially for the LMS algorithms, which are, in general, more

critical at this regard.
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In order to evaluate the rate of convergence, we computed the learning curves

by averaging the cost defined in equation (19) over one thousand realizations

for the LMS-12 method and various choices of the parameter µ. Such a method

was selected because it comprises the LMS-L2 and LMS-L1 as special cases. In

Fig. 8, focusing on the case of a piecewise linear stochastic trend, the curves

have been plotted to demonstrate the influence of the parameter µ onto the

convergence rate of the methods (all the other parameters were set as described

in Section (5.1.2)). It is apparent that all the curves converge to about the same

value with faster convergence relative to greater values, as expected.
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Figure 8: Learning curves relative to LMS algorithms (case of piecewise linear stochastic
trend).

As to the complexity of the proposed methods, the cost of the LMS method

is due to the computation of (22), which in turn depends on (11), whose order

is O(Nθ × (d+ 1)), where d = max(d1, d2). The cost of the RLS method is due

to the computation of (33) and (34) as well as of (36), whose order is O(N2
θ ),

where Nθ = M +N + 1 (assuming d < Nθ).
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5.2. Real data tests

In order to test the presented methods on real time series, we used two dif-

ferent types of dataset. The first type was the economic time series representing

the Standard & Poor Dow-Jones index SP500, taken daily on a 10 years inter-

val (from September 29th, 2006 to October 3rd, 2016) [37]. The second type

of dataset were real ECG signals acquired by using a prototype of wearable

ECG device developed in our laboratory. In both cases, since the real trend is

unknown, the results were evaluated only by means of visual inspection.

5.2.1. Results obtained from the SP500 dataset

Fig. 9 plots the estimated trends obtained by using the RLS-12, LMS-12

and HP algorithms as well as the real data. These results were obtained by

setting the order of the derivatives d1 = 1 and d2 = 2, λ1 = 50, λ2 = 100,

µ = 10−8; the ARMA model was identified with M = 3 and N = 1. As can

be seen, the trend is well estimated by the presented method, even though the

noncausal HP method presents a smoother behavior.
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Figure 9: Real SP500 data and estimated trends with different methods.
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5.2.2. Results obtained from real ECG dataset

A prototype of ECG acquisition device was developed in our laboratory

[14, 13]. Its features are the following: acquisition of 3 ECG bipolar derivations

(DI, DII, DIII) and 1 pre-cordial derivation (V1), by using 5 standard electrodes;

analog front-end and ADC at 24 bit (Texas Instruments ADS1293), sampling

frequency up to 25.6 ksps; micro-controller ARM STM32F411; storage onto mi-

croSD; transmission of ECG signals in real time by means of wireless Bluetooth

4.0 Low Energy (Nordic Semiconductor nRF8001) or by means of USB connec-

tion; PCB dimension of 44x60 mm; long duration battery with capacity of 1300

mAh; standard ECG connectors DIN, diameter 1.5mm.

In Fig. 10, an example of a real ECG signal acquired with the prototype

device is shown as well as the results obtained after baseline removal by means

of RLS-12, LMS-12, and QVRLTI algorithms. As to the proposed methods, we

used ARMA orders M = 1 and N = 3, order of the derivatives d1 = d2 = 1,

λ1 = 20, λ2 = 200, µ = 10−4. The methods were run in Matlab after importing

the data. As can be seen, all the methods allow the baseline wandering to be

cancelled, with the main difference that the proposed algorithms work online,

whereas the QVRLTI method is noncausal.

Figure 10: ECG acquired with the laboratory prototype (top plot) and BW removal results
obtained with the RLS-12, LMS-12 and QVRLTI algorithms (from up to bottom, in that
order).
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5.3. Discussion

As already previously mentioned, the key features of the proposed methods

are the online implementation and a limited usage of resources (memory and

computation). This must be taken into consideration when our algorithms are

compared to classical ones, performing offline and using the dataset in a non-

causal fashion, that may possibly lead to better performance. Another issue in

comparing the various algorithms stands in the fact that the cost to be mini-

mized is different for each method, depending on the choice of several parameters

(order of derivatives, weighting factors, etc.). For these reasons, we considered

as metric of performance the MSE between true and estimated trend, which is

computable only for synthetic datasets, whose order of magnitude depends also

on the range of the signal amplitude.

As to the case of a deterministic trend, addressed to in Section 5.1.1, we

notice that, despite the square wave signal presents abrupt changes and high-

frequency components, all the proposed methods estimated quite well the trend,

even when the model changes (see Fig. 2). The same holds for the case of the

triangular wave trend, with lower MSE due to the higher regularity and narrower

frequency content.

As to the case of a stochastic trend, addressed to in Section 5.1.2, we notice

for ECG-like signals that the `2-norm yields a better MSE coherently with a

nonsparse trend model, while for the piecewise-linear stochastic trend the `1-

norm is better in the RLS case, coherently with a sparse trend model.

6. Conclusion

In this paper, we have presented some methods for trend estimation based

on regularized cost functions. The basic features of the proposed algorithms are

the ARMA modeling of the underlying trend, the use of `1 and `2-norm penalty

functions (separately or jointly) as well as online estimation of model parame-

ters. Novel RLS and LMS solutions to cope with the mixed penalty function

have been derived. The methods are applied to typical trend estimation/removal
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problems that can be found in the analysis of economic time series or biomedical

signal acquisition. The proposed algorithms are also characterized by limited

computational burden and memory requirements so that its implementation on

low-cost devices is feasible. The presented experimental results, performed on

synthetic and real data, validate the effectiveness of the proposed methods and

compare them with classical regularized smoothing approaches that, however,

use the whole set of data in a noncausal fashion.
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