Neuroglobin (Ngb) was the first vertebrate nerve globin to be identified. Since then, different physiological roles have been hypothesised for this hexa-coordinated globin, but its function is far from being unambiguously assigned. In a previous work, we collected first evidences of Ngb potentially taking part to electron transfer (ET) processes in vivo, investigating the redox thermodynamics of this globin. Here, we perform a computational investigation on the complex between Ngb and its putative in vivo partner cyt c and on the ET process between the two species. The simulated structure of the complex is amenable for ET in terms of distance and relative protein orientation. Moreover, the redox-dependent stability of the predicted Ngb-cyt c adduct and the very good agreement between calculated determinants to the ET rate and those of paradigmatic metalloproteins acting as electron shuttles all support a potential role of neuroglobin as an electron transfer species.
Computational investigation of the electron transfer complex between neuroglobin and cytochrome c / Zanetti Polzi, Laura; Battistuzzi, Gianantonio; Borsari, Marco; Pignataro, Marcello; Pltrinieri, Licia Paltrinieri; Daidone, Isabella; Bortolotti, Carlo Augusto. - In: SUPRAMOLECULAR CHEMISTRY. - ISSN 1061-0278. - 29:11(2017), pp. 846-852. [10.1080/10610278.2017.1377342]
Computational investigation of the electron transfer complex between neuroglobin and cytochrome c
BATTISTUZZI, Gianantonio;BORSARI, Marco;PIGNATARO, MARCELLO;BORTOLOTTI, Carlo Augusto
2017
Abstract
Neuroglobin (Ngb) was the first vertebrate nerve globin to be identified. Since then, different physiological roles have been hypothesised for this hexa-coordinated globin, but its function is far from being unambiguously assigned. In a previous work, we collected first evidences of Ngb potentially taking part to electron transfer (ET) processes in vivo, investigating the redox thermodynamics of this globin. Here, we perform a computational investigation on the complex between Ngb and its putative in vivo partner cyt c and on the ET process between the two species. The simulated structure of the complex is amenable for ET in terms of distance and relative protein orientation. Moreover, the redox-dependent stability of the predicted Ngb-cyt c adduct and the very good agreement between calculated determinants to the ET rate and those of paradigmatic metalloproteins acting as electron shuttles all support a potential role of neuroglobin as an electron transfer species.File | Dimensione | Formato | |
---|---|---|---|
SupramolChem2017-published.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris