Background. The emergence and dissemination of multi drug resistant (MDR) Gram-negative pathogens resistant to all available antibiotics poses a significant threat in clinical therapy. Among them, Klebsiella Pneumoniae clinical isolates overexpressing KPC-2 carbapenemase are the most worrisome, extending bacterial resistance to last resort carbapenems. [1-2] Materials/methods. Four boronic acid derivatives were designed and tested in vitro vs KPC-2.[3] In biological assays their ability to synergize last generation antibiotics was evaluated. X-ray crystallography was applied to confirm binding orientation and new compounds ability to reach consensus-binding sites in carbapenemases (Figure 1). Results. For the most actives active compounds nanomolar affinity was achieved. The best inhibitor has nanomolar affinity for the enzyme, a ligand efficiency of 0.78 kcal mol–1 and a molecular weight of 158 Da validating it as lead-like molecule. In biological assays against Escherichia coli overexpressing KPC-2 new derivatives restored susceptibility to cefotaxime, aztreonam and last resort carbapenems. Two crystallographic binary complexes of the best inhibitors binding KPC-2 were obtained at high resolution. Conclusion. We investigate the molecular recognition requirements in KPC-2 active site by boronic acid derivatives. Kinetic descriptions of slow binding, time dependent inhibition and interactions geometries in KPC-2 were fully investigated. This study will guide further lead optimization and development of more effective KPC-2 inhibitors. Figure 1 References [1] Jean-Marie Frère, Eric Sauvage and Frédéric Kerff. “From “An enzyme able to destroy penicillin » to carbapenemases: 70 years of beta-lactamase misbehavior” Current Drug Targets, (2016). Volume 16. (E-pub ahead of print). [2] Tondi, D.; Cross, S.; Venturelli, A.; Costi, MP; Cruciani, G.; Spyrakis, F. Current Drug Targets 2016 17, no. 9 (2016) [3] Tondi,D.; Venturelli,A.; Bonnet,R.; Pozzi, C.; Shoichet, BK.; Costi, M.P. JMC. 2014. 57 (12), pp 5449–5458.

A multidisciplinary approach to the design of novel inhibitors for KPC-2 / Celenza, Giuseppe; Bellio, Pierangelo; Linciano, Pasquale; Perilli, Mariagrazia; Cendron, Laura; Tondi, Donatella. - (2017). (Intervento presentato al convegno 13th beta-lactamase Meeting tenutosi a Santo Stefano di Sessanio nel 16-19 June 2017).

A multidisciplinary approach to the design of novel inhibitors for KPC-2

LINCIANO, PASQUALE;TONDI, Donatella
Supervision
2017

Abstract

Background. The emergence and dissemination of multi drug resistant (MDR) Gram-negative pathogens resistant to all available antibiotics poses a significant threat in clinical therapy. Among them, Klebsiella Pneumoniae clinical isolates overexpressing KPC-2 carbapenemase are the most worrisome, extending bacterial resistance to last resort carbapenems. [1-2] Materials/methods. Four boronic acid derivatives were designed and tested in vitro vs KPC-2.[3] In biological assays their ability to synergize last generation antibiotics was evaluated. X-ray crystallography was applied to confirm binding orientation and new compounds ability to reach consensus-binding sites in carbapenemases (Figure 1). Results. For the most actives active compounds nanomolar affinity was achieved. The best inhibitor has nanomolar affinity for the enzyme, a ligand efficiency of 0.78 kcal mol–1 and a molecular weight of 158 Da validating it as lead-like molecule. In biological assays against Escherichia coli overexpressing KPC-2 new derivatives restored susceptibility to cefotaxime, aztreonam and last resort carbapenems. Two crystallographic binary complexes of the best inhibitors binding KPC-2 were obtained at high resolution. Conclusion. We investigate the molecular recognition requirements in KPC-2 active site by boronic acid derivatives. Kinetic descriptions of slow binding, time dependent inhibition and interactions geometries in KPC-2 were fully investigated. This study will guide further lead optimization and development of more effective KPC-2 inhibitors. Figure 1 References [1] Jean-Marie Frère, Eric Sauvage and Frédéric Kerff. “From “An enzyme able to destroy penicillin » to carbapenemases: 70 years of beta-lactamase misbehavior” Current Drug Targets, (2016). Volume 16. (E-pub ahead of print). [2] Tondi, D.; Cross, S.; Venturelli, A.; Costi, MP; Cruciani, G.; Spyrakis, F. Current Drug Targets 2016 17, no. 9 (2016) [3] Tondi,D.; Venturelli,A.; Bonnet,R.; Pozzi, C.; Shoichet, BK.; Costi, M.P. JMC. 2014. 57 (12), pp 5449–5458.
2017
13th beta-lactamase Meeting
Santo Stefano di Sessanio
16-19 June 2017
Celenza, Giuseppe; Bellio, Pierangelo; Linciano, Pasquale; Perilli, Mariagrazia; Cendron, Laura; Tondi, Donatella
File in questo prodotto:
File Dimensione Formato  
poster_BLSmeeting2017.pdf

Accesso riservato

Descrizione: POSTER Finale
Tipologia: Altro
Dimensione 7.82 MB
Formato Adobe PDF
7.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1141374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact