We consider a parabolic partial differential equation that can be understood as a simple model for crowds flows. Our main assumption is that the diffusivity and the source/sink term vanish at the same point; the nonhomogeneous term is different from zero at any other point and so the equation is not monostable. We investigate the existence, regularity and monotone properties of semi-wavefront solutions as well as their convergence to wavefront solutions.

Sharp profiles in models of collective movement / Corli, Andrea; DI RUVO, Lorenzo; Malaguti, Luisa. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:4(2017), pp. 24-40. [10.1007/s00030-017-0460-z]

Sharp profiles in models of collective movement.

DI RUVO, LORENZO;MALAGUTI, Luisa
2017

Abstract

We consider a parabolic partial differential equation that can be understood as a simple model for crowds flows. Our main assumption is that the diffusivity and the source/sink term vanish at the same point; the nonhomogeneous term is different from zero at any other point and so the equation is not monostable. We investigate the existence, regularity and monotone properties of semi-wavefront solutions as well as their convergence to wavefront solutions.
2017
21-giu-2017
24
4
24
40
Sharp profiles in models of collective movement / Corli, Andrea; DI RUVO, Lorenzo; Malaguti, Luisa. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:4(2017), pp. 24-40. [10.1007/s00030-017-0460-z]
Corli, Andrea; DI RUVO, Lorenzo; Malaguti, Luisa
File in questo prodotto:
File Dimensione Formato  
CDM_Sharp_revised.pdf

Open access

Descrizione: Versione rivista
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 373.31 kB
Formato Adobe PDF
373.31 kB Adobe PDF Visualizza/Apri
s00030-017-0460-z.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 956.05 kB
Formato Adobe PDF
956.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1139170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact