We consider a parabolic partial differential equation that can be understood as a simple model for crowds flows. Our main assumption is that the diffusivity and the source/sink term vanish at the same point; the nonhomogeneous term is different from zero at any other point and so the equation is not monostable. We investigate the existence, regularity and monotone properties of semi-wavefront solutions as well as their convergence to wavefront solutions.
Sharp profiles in models of collective movement / Corli, Andrea; DI RUVO, Lorenzo; Malaguti, Luisa. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 24:4(2017), pp. 24-40. [10.1007/s00030-017-0460-z]
Sharp profiles in models of collective movement.
DI RUVO, LORENZO;MALAGUTI, Luisa
2017
Abstract
We consider a parabolic partial differential equation that can be understood as a simple model for crowds flows. Our main assumption is that the diffusivity and the source/sink term vanish at the same point; the nonhomogeneous term is different from zero at any other point and so the equation is not monostable. We investigate the existence, regularity and monotone properties of semi-wavefront solutions as well as their convergence to wavefront solutions.File | Dimensione | Formato | |
---|---|---|---|
CDM_Sharp_revised.pdf
Open access
Descrizione: Versione rivista
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
373.31 kB
Formato
Adobe PDF
|
373.31 kB | Adobe PDF | Visualizza/Apri |
s00030-017-0460-z.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
956.05 kB
Formato
Adobe PDF
|
956.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris