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Abstract. We consider a parabolic partial differential equation that can
be understood as a simple model for crowds flows. Our main assumption
is that the diffusivity and the source/sink term vanish at the same point;
the nonhomogeneous term is different from zero at any other point and
so the equation is not monostable. We investigate the existence, regu-
larity and monotone properties of semi-wavefront solutions as well as
their convergence to wavefront solutions.
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1. Introduction

In this paper we consider the scalar advection-reaction-diffusion equation

ρt + f(ρ)x =
(
D(ρ)ρx

)
x

+ g(ρ), t ≥ 0, x ∈ R, (1.1)

for the unknown function ρ = ρ(x, t). We assume that f ∈ C1[0, ρ], f(0) = 0,
g ∈ C[0, ρ], D ∈ C1[0, ρ] and denote for short h(ρ) := f ′(ρ); here, ρ is a
positive constant. All along the paper we consider several different conditions
on both D and g but we mainly focus on the case that D satisfies

(D) D(ρ) = 0 and D(ρ) > 0 for ρ ∈ (0, ρ).

About the forcing term g we mainly deal with the following assumption:

(g) g(ρ) > 0 for ρ ∈ [0, ρ) and g(ρ) = 0.

We refer to Figure 1 for a pictorial summary showing the typical behavior of
the diffusivity D and of the source/sink term g according to the assumptions
we require here and below.



2 Corli, di Ruvo and Malaguti

ρ

D

ρ

(D)

(D)

(D̃)

(D̂)

ρ

g

ρ

(g)

(g0)

(ĝ)
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Figure 1. Some examples of diffusivities D and source/sink
terms g used in the paper.

Equation (1.1) was recently proposed in [6, 8] as a simplified model
for collective movements in one spatial dimension. In that case the function
ρ(x, t) represents the density of pedestrians at point x and time t, while ρ is
the maximal density that the environment can support. Pedestrians are ad-
vected by the function f ; a common choice in this framework is f(ρ) = ρv(ρ),
where v is an assigned density-dependent velocity. The term D accounts for
diffusion effects and takes into account the visual depth; under the above
choice of f , in [6] the authors deduce D(ρ) = −δρv′(ρ) by a Chapman-Enskog
expansion, where δ is the visual depth. At last, a source term g satisfying (g)
represents entries, which are thought to be diffused rather than localized at
some place [2]. This modeling can be meaningful, for instance, for a crowd
flowing along a corridor with many side entries; think at the barrier of a
subway exit or at the platforms of a railway station reaching the main hall:
instead of modeling each single entry we use a continuum description. If g is
a decreasing function of ρ, then entries are high at low densities on the line,
low at high densities and are blocked when the maximal density ρ is reached.
We refer to [8] for a more detailed discussion of this model as well as to other
physical and biological phenomena that equation (1.1) models.

We are interested in the existence and regularity of constant-profile
solutions ρ of (1.1), i.e. solutions of the form ρ(x, t) = ϕ(x− ct), where ϕ(ξ)
is the wave profile and c the constant wave speed. In this case ϕ(ξ) satisfies
the equation (

D(ϕ)ϕ ′
) ′

+
(
c− h(ϕ)

)
ϕ ′ + g(ϕ) = 0 (1.2)

in some open interval I ⊆ R, where ′ denotes differentiation with respect to
ξ. We refer to [3, 13] for a wide treatment of this topic.

In [8] we discussed in detail this topic in the case the diffusivity D
satisfies both D(0) = 0 and D(ρ) > 0; these conditions were deduced by
experimental data in [6] but we treated as well the case D(0) > 0. We proved
that for every wave speed c there exist classical semi-wavefront solutions, i.e.
constant-profile solutions such that their profile ϕ is defined in a half-line
and D(ϕ)ϕ ′ is absolutely continuous. We also showed that the slope of the
profiles ϕ at points where ρ = 0 depends on the order of vanishing of D at 0.
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At last, we proved that pasting semi-wavefront solutions never yields global
traveling-waves.

In the current paper, aiming at the widest generality, we make no as-
sumption about the vanishing ofD at 0; however, we mostly assumeD(ρ) = 0.
Some motivations to this latter assumption can be found in [4, 5, 9]; a
naive explanation, in terms of the above model, is the following. Assume
f(ρ) = ρv(ρ) as above; then, it is natural to require v(ρ) = 0. If D(ρ) > 0,
then the effect of diffusion is to let vehicles or pedestrians move backwards
at points where the maximal density is reached, because v(ρ) = 0; this is in
contradiction with the phenomenon we are modeling.

The degenerate behavior induced by assumption (D) does not affect
most of the existence results given in [8]; however, here we show that it
causes a lack of their regularity and leads to sharp semi-wavefront solutions
[23]. This is in contrast to [8], where only classical solutions appeared, and is
due to the vanishing of both D and g at ρ. We refer to Definition 2.1 below for
both definitions. Now, we provide a detailed account on these sharp solutions.

A sharp semi-wavefront solution is constant on a half-plane and reaches
this value in a continuous but non-differentiable way. The interest in sharp
solutions is related to the important property of finite speed of propagation,
as showed in [12]. The appearance of sharp profiles was first discussed in [1]
within the framework of models of biological invasion. The equation studied
there is

ut = (um)xx + u(1− u), (1.3)

with m > 1; it is showed that equation (1.3) supports wavefronts for a half-
line of admissible speeds and the solution with minimal speed c∗(m) has a
sharp behavior. The explicit computation of this sharp solution is provided in
[21] when m = 2; in that case c∗(2) = 1/

√
2. The case when the source term

u(1 − u) in (1.3) is replaced by u(1 − u)(u − α), with α ∈ (0, 12 ), is treated
in [14] and again a sharp wavefront arises. Equation (1.3) led to study the
general model

ut =
(
D(u)ux

)
x

+ g(u), (1.4)

with D(0) = 0, in the monostable case

g(u) > 0 in (0, 1) and g(0) = g(1) = 0. (1.5)

The uniqueness of a sharp solution (in the class of classical or sharp solutions)
is proved in [23]. A rather general discussion on sharp wavefronts appeared
in [19] for the equation

ut + h(u)ux =
(
D(u)ux

)
x

+ g(u), (1.6)

which incorporates the convective term h(u); the source term g satisfies again
(1.5) andD has essentially a polynomial growth near 0 and 1 if it also vanishes
there. A doubly sharp behavior can be observed in the latter case. In recent
years, sharp profiles have been considered in equations with delay arguments
in the source term [15] and in coupled equations see [10, 24]. We also quote
[25] for a model without source term but with the presence of an extra term
depending on uxt.
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To the best of our knowledge, the study of sharp profiles done in this pa-
per is new and our results can be derived by none of the papers quoted above.
The reason is twofold. On the one hand, here we have no restrictions about
the growth of D near ρ. On the other hand, we deal with semi-wavefronts cor-
responding to every wave speed; on the contrary, only a half-line of wavefront
speeds is admissible for equation (1.6) under condition (1.5). We notice that,
as in the monostable case, a critical threshold c∗ appears when (g) holds [8],
and satisfies completely analogous estimates. However, while in the former
case c∗ separates the existence or the failure of wavefronts, in the latter it
only gives information about the slope of the profiles when they reach the
value 0.

The plan of the paper now follows. In Section 2 we give precise def-
initions and state our results. We establish the existence of semi-wavefront
solutions for every wave speed c, we characterize the occurrence of classical or
sharp profiles and show some monotonicity properties. Indeed, we also deal
with the case when D ∈ C[0, ρ] ∩ C1[0, ρ) satisfies

(D̃) D(ρ) = 0, D(ρ) > 0 for ρ ∈ (0, ρ), Ḋ(ρ) = −∞; moreover, there exists

limϕ→ρ−
D(ϕ)g(ϕ)
ϕ−ρ ∈ (−∞, 0].

Then, we briefly consider the companion case when the source term g models
exists [2] instead of entries. This case (even under the assumption D(ρ) > 0)
was not treated in [8]; in order to cover also that case, we make no require-
ments about the vanishing of D at ρ and simply assume

(D̂) D(ρ) > 0 for ρ ∈ (0, ρ);

(ĝ) g(ρ) < 0 for ρ ∈ (0, ρ] and g(0) = 0.

We also refer to [16, 17] for a source term satisfying condition (ĝ) in a different
framework.

Next, we deal with the convergence of semi-wavefronts to wavefronts un-
der the assumption that the diffusivity still satisfies (D̂) or (D̃). We consider
a decreasing sequence of source terms gn that satisfy (g) and converge uni-
formly to a source term g0 ∈ C[0, ρ] satisfying the reinforced monostability
condition

(g0) g(ρ) > 0 for ρ ∈ (0, ρ), g(0) = g(ρ) = 0 and lim sup
ρ→0+

D(ρ)g(ρ)

ρ
< +∞.

Notice that, when D(0) = 0, the last condition in (g0) is automatically satis-
fied. As we pointed out above, the equation associated with g0 admits wave-
fronts and the issue is whether and how the semi-wavefront profiles ϕn as-
sociated to the equation with gn converge to the profile ϕ0 associated to
the equation with g0. We thank C. Mascia for having risen such a question.
Notice that assumptions (D̃) and (g0) mix together D and g; indeed, this
mixing is well known when dealing with diffusivities and source terms that
may vanish at the same point.

Our last result concerns the case when the term g changes sign; namely,
we assume
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(g1) g(ρ) > 0 for ρ ∈ [0, ρ0) and g(ρ) < 0 for ρ ∈ (ρ0, ρ],

with ρ0 ∈ (0, ρ). Such a term may be thought to model entries if ρ ∈ [0, ρ0)
and exits if ρ ∈ (ρ0, ρ]. Under a further local assumption at ρ0 we prove the
existence of several patterns of traveling waves.

The results provided in Section 2 do not cover all possible cases: we
tried to deal with the most significant situations while avoiding exceedingly
complicated statements and proofs. However, it is not difficult to extend our
results by a suitable mixing of the techniques exploited in [8] and in the
current paper.

Section 3 is concerned with a technical tool that was intensively used in
[8]; namely, the reduction of the second-order equation (1.2) to the singular
first-order equation

ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ (0, ρ). (1.7)

Such an order reduction depends on the strict monotonicity of the wave
profile ϕ in the interval where 0 ≤ ϕ(ξ) < ρ. In that case, if we denote by
ξ = ξ(ϕ) the inverse function of ϕ, then the function z is defined by z(ϕ) :=
D(ϕ)ϕ ′

(
ξ(ϕ)

)
for ϕ ∈ (0, ρ). We point out that similar techniques were

recently exploited in [11] in the case D is a saturating diffusion depending on
ρx instead of ρ.

In Section 4 we first prove a property of semi-wavefront profiles and
deduce that our definition of sharp profiles is essentially equivalent to a pre-
vious one given in [19]; that section and Sections 5 contain the proofs of our
main results. As in [8, §8], the procedure of pasting semi-wavefront solutions
to obtain a global traveling wave is unsuccessful. Sections 6 contain the proof
of the convergence of semi-wavefronts to wavefronts while in Section 7 we
prove the result corresponding to (g1).

2. Main results

In this section we first introduce traveling-wave and semi-wavefront solutions
to (1.1); assumptions (D) and (g) are not required in these definitions. We
refer to [3, 8, 13, 23] for more details. Then, we state and comment our main
results.

Definition 2.1. Let I ⊆ R be an open interval; consider a function ϕ : I →
[0, ρ] such that ϕ ∈ C(I) and D(ϕ)ϕ ′ ∈ L1

loc(I). For all (x, t) with x− ct ∈ I,
the function ρ(x, t) = ϕ(x− ct) is said a traveling-wave solution of equation
(1.1) with wave speed c and wave profile ϕ if∫

I

{(
D
(
ϕ(ξ)

)
ϕ′(ξ)− f

(
ϕ(ξ)

)
+ cϕ(ξ)

)
ψ′(ξ)− g

(
ϕ(ξ)

)
ψ(ξ)

}
dξ = 0,

(2.1)
for every ψ ∈ C∞0 (I). A traveling-wave solution is

-) global if I = R;
-) strict if I 6= R and ϕ is not extendible to R;
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-) classical if ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous and (1.2)
holds a.e.

-) sharp at ` if g(`) = 0 and there exists ξ0 ∈ I such that ϕ(ξ0) = `, with
ϕ classical in I \ {ξ0} and not differentiable at ξ0.

A wavefront solution is a global traveling-wave solution such that the limits
of ϕ at ±∞ are zeros of the function g.

We point out that a profile ϕ to a traveling-wave solution must be
differentiable a.e. in I; if ϕ is classical, then it is differentiable everywhere
in I. In the latter case it can happen that ϕ extends continuously to Ī but
it is not differentiable at the extreme points of Ī. Of course, if (1.2) holds
a.e. in I then (2.1) is satisfied. We remark that the study of global sharp
traveling-wave solutions for (1.1) has been done in [19] under the further
requirement

lim
ξ→ξ0

D
(
ϕ(ξ)

)
ϕ′(ξ) = 0.

Indeed, in Proposition 4.1 we prove that this property is a consequence of Def-
inition 2.1; then, the two definitions are equivalent for sharp global traveling-
wave solutions. We point out that in this paper we shall only deal with
classical or sharp traveling-wave solutions.

Now, we define semi-wavefront solutions.

Definition 2.2. Let ρ be a traveling-wave solution of equation (1.1) whose
wave profile ϕ is defined in ($,+∞), $ ∈ R; let `+ ∈ [0, ρ] be such that
g(`+) = 0. Then, ρ is said a semi-wavefront solution of (1.1) to `+ if ϕ is
monotonic, non-constant and

ϕ(ξ)→ `+ as ξ → +∞.
Analogously, ρ is said a semi-wavefront solution of (1.1) from `−, for some
`− ∈ [0, ρ], if g(`−) = 0, ϕ is defined (−∞, $), is monotonic, non-constant
and ϕ(ξ)→ `− as ξ → −∞.

Above, monotonic is meant in the weak sense: if ξ < ξ2 then either
ϕ(ξ1) ≤ ϕ(ξ2) or ϕ(ξ1) ≥ ϕ(ξ2); analogously, non-constant stands for non-
identically constant. For simplicity, in the following we use the terminology
introduced for solutions to (1.1) also for profiles of such solutions. We refer
to Figure 2 for a representation of some semi-wavefront profiles.

Notice that equation (1.1) with conditions (D) and (g) can only admit
semi-wavefront solutions from (to) ρ. For a profile ϕ of a semi-wavefront
solution from ρ, we use the notation

ξ = inf
{
ξ < $ : ϕ(ξ) < ρ

}
. (2.2)

We define ξ = sup
{
ξ > $ : ϕ(ξ) < ρ

}
in the case of a semi-wavefront solu-

tion to ρ . For every sharp semi-wavefront profile the corresponding value ξ
is a real number and coincides with ξ0 introduced in Definition 2.1, which as
a consequence is unique. However, there are also classical semi-wavefronts for
which ξ ∈ R (see Theorem 2.5). More precisely, if a profile ϕ from ρ is sharp

then ξ ∈ R and, if ϕ ′(ξ
+

) exists, then ϕ ′(ξ
+

) 6= 0, being possibly infinite;
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Figure 2. A strictly decreasing semi-wavefront profile ϕ1

from ρ; a strictly increasing semi-wavefront profile ϕ5 to ρ.
Non-strictly decreasing, sharp (at ρ) semi-wavefront profiles
ϕ2 and ϕ3 from ρ; a non-strictly increasing, classical semi-
wavefront profile ϕ4 to ρ. While ϕ4 is smooth at ξ4, ϕ2 and
ϕ3 are not smooth at ξ2 and ξ3, respectively.

therefore, ϕ is not strictly monotone. If ϕ is a classical profile from ρ, then
either ξ = −∞ or ξ ∈ R and ϕ′(ξ) = 0.

Here follows our first main result. It states that semi-wavefront solutions
from (to) ρ exist for every wave speed c; moreover, it establishes whether they
are either classical or sharp, according to the different values of c. Roughly
speaking, in the case of semi-wavefront solution from ρ, slow profiles are sharp
and fast profiles are classical while the converse holds for semi-wavefront to
ρ. We denote by a dot the differentiation with respect to ρ.

Theorem 2.3 (Existence of semi-wavefront solutions). Consider equation (1.1)

under assumptions (D), or (D̃), and (g). Then, for every wave speed c ∈ R,
equation (1.1) has semi-wavefront solutions from ρ and to ρ, which are strict
and unique (up to shifts) in the class of classical and sharp traveling-wave
solutions.

Moreover, let ϕ denote the wave profile. In case (D) we have that

ϕ is

{
sharp if c < h(ρ),
classical if c > h(ρ),

from ρ,

while

ϕ is

{
classical if c < h(ρ),
sharp if c > h(ρ),

to ρ.

In the case c = h(ρ), the profiles are classical if Ḋ(ρ) < 0 while they can be

either classical or sharp if Ḋ(ρ) = 0.

In case (D̃) the profiles are always classical.

We shall see in the proof, see also Remark 4.3, that, when (D) holds, in

the case c = h(ρ) and Ḋ(ρ) = 0 the possibility for a profile of being classical
or sharp depends on the order of vanishing of D, h − c and g at ρ. Notice
that the effect of assumption (D̃) consists in regularizing the profiles, in the
sense that all of them are always classical.
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We now briefly consider source terms g satisfying condition (ĝ). Under

conditions (D̂) and (ĝ), the stationary solution of (1.1) is u ≡ 0; therefore, the
asymptotic state of the possible semi-wavefront profiles is 0. For simplicity,
we state the following result only in the case of semi-wavefront solutions from
0.

Theorem 2.4 (A negative source term vanishing at 0). Consider equation

(1.1) under assumptions ˆ(D) and (ĝ). Then, for every wave speed c ∈ R,
equation (1.1) has a semi-wavefront solution from 0 which is unique (up to
shifts) in the class of classical or sharp solutions. Moreover, such a solution
is strict.

In the case D(0) > 0 the wave profile ϕ is classical. If D(0) = 0 then

ϕ is

{
sharp if c < h(0),
classical if c > h(0);

at last, if c = h(0) then ϕ is classical if Ḋ(0) > 0, while in the case Ḋ(0) = 0
it can be either classical or sharp.

Now, we come back to assumption (D) and (g). Sharp semi-wavefront
profiles cannot be strictly monotone because they are constant for ξ ∈ (−∞, ξ]
or for ξ ∈ [ξ,∞). On the contrary, classical profiles can be either strictly or
non-strictly monotone; the following result gives some simple conditions on
the forcing term g that show when this happens. An analogous result was
given in [8] by exploiting the assumption D(ρ) > 0; however, its proof does
not extend straightforwardly to cover the case when (D) holds.

Theorem 2.5 (Characterization of strictly monotone solutions). Consider
equation (1.1) under assumptions (D) and (g). Let ϕ be a wave profile with
wave speed c of some semi-wavefront solution from (to) ρ and let L > 0 be a
constant.

(i) If g(ρ) ≤ L(ρ − ρ) in a left neighborhood of ρ and c > h(ρ) (resp.,
c < h(ρ)), then ϕ is strictly monotone, i.e., ϕ(ξ) < ρ for every ξ in its
domain.

(ii) If g(ρ) ≥ L(ρ − ρ)α in a left neighborhood of ρ for some α ∈ (0, 1),
then ϕ is non-strictly monotone, i.e., ϕ(ξ) ≡ ρ in (−∞, ξ] (resp., in
[ξ,+∞)), for some ξ in its domain.

The borderline case c = h(ρ) is not considered in case (i) above, since it
involves a heavier technical analysis. We refer to Figure 3 for a graphical rep-
resentation of Theorem 2.3 and Theorem 2.5. The extension of Theorem 2.5
to the case when assumption (ĝ) holds is straightforward and, then, omitted.

We give now a result of convergence of semi-wavefronts to wavefronts. As
we mentioned in the Introduction, if g0 satisfies (g0) then the corresponding
equation

ρt + f(ρ)x =
(
D(ρ)ρx

)
x

+ g0(ρ), t ≥ 0, x ∈ R, (2.3)
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Figure 3. A strictly decreasing classical profile ϕ1 occur-
ring in case (i); a non-strictly decreasing classical profile ϕ2

occurring in case (ii); a sharp profile ϕ3.

has a wavefront solution connecting ρ with 0, for every wave speed c ≥ c∗0;
the corresponding profile is decreasing and estimates are available for the
threshold speed c∗0, see [3, 13, 18]. We also consider a strictly decreasing
sequence {gn}n≥1 of source terms satisfying condition (g) and converging
uniformly to g0, see Figure 4. As stated in Theorem 2.3, the corresponding
equations

ρt + f(ρ)x =
(
D(ρ)ρx

)
x

+ gn(ρ), t ≥ 0, x ∈ R, n ≥ 1, (2.4)

admit semi-wavefront solutions from and to ρ, for every wave speed c. For
simplicity, we restrict our discussion to the significative cases (D) and (D̃).

ρ

g

ρ

g0

g1
g2
gn

ξ

ϕ

ρ

ρ
2

ϕ0

ϕ0

ϕn

ϕn
$n

Figure 4. Left: the function g0 and the sequence {gn}n≥1.
Right: the profiles ϕ0 and ϕn.

Since profiles ϕn, n ≥ 0, to either (2.3) or (2.4) are uniquely defined
only up to shifts, we fix their values at ξ = 0 by imposing

ϕn(0) =
ρ

2
, n ≥ 0. (2.5)

We can now state our convergence result, see Figure 4.

Theorem 2.6 (Convergence of semi-wavefront profiles to a wavefront profile).

Assume either condition (D̂) or (D̃). Consider g0 ∈ C[0, ρ] satisfying (g0)
and let {gn}n≥1 be a decreasing sequence satisfying (g) such that gn → g0
uniformly. Moreover, for c ≥ c∗0 let ϕ0 be the wavefront profile of (2.3) and
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ϕn the semi-wavefront profile of (2.4) from ρ, both of them with wave speed
c and satisfying (2.5).

Then ϕn → ϕ0 in C1
loc(J), where J is the maximal open interval where

0 < ϕ0 < ρ.

Theorem 2.6 deserves some comments. First, note that ϕ0 can be either
strictly monotone or not; in the latter case, it can be either classic or sharp
at one or even both equilibria of g. Second, an analogous result holds for
semi-wavefront profiles to ρ. Third, much more general results can be given
if we also let the diffusivity, flux and wave speed vary and converge to some
limit functions [20]. We focused on the source terms because they determine
whether solutions are either semi-wavefronts (in case (g) holds) or wavefronts
(in case (g0)).

Now, we assume that the source term g ∈ C[0, ρ] satisfies (g1) and

|g(ρ)| ≥ L |ρ0 − ρ|α in a neighborhood of ρ0, (2.6)

for some α ∈ (0, 1) and L > 0; see Figure 5. We aim at constructing traveling-
wave solutions whose profiles are defined through the equilibrium point ρ0;
this will be obtained through a suitable pasting of some semi-wavefront so-
lutions.

ρ

g

............

ρρ0

g1

g2

Figure 5. Two functions satisfying (g1): here, g2 satisfies
(2.6) while g1 does not.

Theorem 2.7 (Existence of traveling-wave solutions). Consider equation (1.1)

under assumptions (D̂), (g1) and (2.6). Then, for every wave speed c ∈ R
equation (1.1) has for solutions:

(1) a traveling wave ρ1 assuming any value in [0, ρ] and with a strictly
increasing profile;

(2) a traveling wave ρ2 assuming any value in [0, ρ] and with a strictly
decreasing profile;

(3) a traveling wave ρ3 with values in the interval [0, ρ0];
(4) a traveling wave ρ4 with values in the interval [ρ0, ρ].

All these traveling-wave solutions are strict and classical; moreover, they are
unique (up to shifts) in the class of classical and sharp strictly monotone
traveling-wave solutions.

We refer to Section 7 for a pictorial interpretation of this result.
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3. The first-order problem

For brevity, in the following we simply refer to ρ as a semi-wavefront and
to ϕ as its profile. Moreover, we mainly consider the case of semi-wavefronts
from ρ; the case of semi-wavefront solutions to ρ is analogous.

This section is devoted to the singular first-order boundary value prob-
lem 

ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)
z(ϕ) ,

z(ϕ) < 0, ϕ ∈ (0, ρ),
z(0 +) =: z0 ≤ 0, z(ρ−) = 0.

(3.1)

We used the notation z(0+) and z(ρ−) because the equation in (3.1) is sin-
gular: its right-hand side is not defined at ρ and possibly it is defined neither
at 0; then the values of z at these points must be understood in the sense
of the limit. As a consequence, solutions z to (3.1) are meant in the sense
z ∈ C0[0, ρ] ∩ C1(0, ρ). We point out that the differentiability of D plays no
role in the solvability of (3.1).

Lemma 3.1. Assume (g) and let D ∈ C[0, ρ] be such that D(ρ) > 0, ρ ∈ (0, ρ).
Assume one of the following conditions:

(i) D(0) > 0;

(ii) D(0) = 0 and lim sup
ϕ→0+

D(ϕ)

ϕ
<∞;

(iii) D(0) = 0 and Ḋ(0) =∞.

Then, problem (3.1) is uniquely solvable for every c ∈ R. Moreover, there
exists a real number c∗ such that

z(0+) =

{
0 in case (ii) when c ≥ c∗,
z0 < 0 otherwise.

Proof. The proof of this result already appeared in previous papers: case (i)
and case (ii) with c < c∗ are treated in [8, Theorem 2.6], case (iii) is discussed
in [8, Theorem 2.10], case (ii) with c ≥ c∗ can be obtained by [18, Lemma
2.2 and Theorem 4.1] when assuming in [18] d = 1 and the source term equal
to Dg. Notice that in [18] D(0) > 0 and g(0) = 0; here the assumptions on
D and g in ρ = 0 are exchanged, but this does not affect the conclusion. �

Now, we show that the solution z provided by Lemma 3.1 is differen-
tiable at ρ and that ż(ρ) can be explicitly computed. Notice that by (1.7) we
have (

ż(ϕ)− h(ϕ) + c
) z(ϕ)

ϕ− ρ
= −D(ϕ)

ϕ− ρ
g(ϕ). (3.2)

Hence, it is clear that the value of ż(ρ) depends on the behavior of the right-
hand side in (3.2) near the point ρ. This accounts for the following statement.

Proposition 3.2. Under the same hypotheses of Lemma 3.1, assume moreover
that the limit of the right-hand side of (3.2) exists and denote

lim
ϕ→ρ−

D(ϕ)

ϕ− ρ
g(ϕ) = ` ∈ (−∞, 0].
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Then, the solution z of problem (3.1) satisfies

ż(ρ) =


{

0 if c ≥ h(ρ),
h(ρ)− c if c < h(ρ),

if ` = 0,

h(ρ)− c+
√

(h(ρ)− c)2 − 4`

2
if −∞ < ` < 0,

(3.3)

Proof. We consider separately two cases.

(i) ` = 0. This is the case, in particular, when (D) holds; most of the
following proof already appeared in [19, Lemma 2.1]. We denote the lower
and upper left Dini-derivatives [22] of z at ρ by

D−z(ρ) =: lim inf
ϕ→ρ−

z(ϕ)

ϕ− ρ
, lim sup

ϕ→ρ−

z(ϕ)

ϕ− ρ
:= D−z(ρ).

By (3.1)2 we have D−z(ρ) ≥ 0.

If D−z(ρ) > 0, then z(ϕ)
ϕ−ρ ≥ δ > 0 in some left neighborhood of ρ. By

(3.2) and ` = 0 we deduce

lim
ϕ→ρ−

ż(ϕ) = h(ρ)− c,

and this leads to the existence of ż(ρ) = h(ρ)− c.
If D−z(ρ) = 0, to prove that ż(ρ) exists we argue by contradiction and

then assume D−z(ρ) > 0. As a consequence, for every λ ∈
(
0, D−z(ρ)

)
we

can find two sequences {αn} and {βn} in (0, ρ), both of them converging to
ρ, such that

z(αn)

αn − ρ
= λ and

ż(αn)− λ
αn − ρ

=
d

dϕ

(
z(ϕ)

ϕ− ρ

)
|ϕ=αn

≥ 0;

z(βn)

βn − ρ
= λ and

ż(βn)− λ
βn − ρ

=
d

dϕ

(
z(ϕ)

ϕ− ρ

)
|ϕ=βn

≤ 0.

(3.4)

By (3.4)2 we have ż(βn) ≥ z(βn)
βn−ρ = λ and then(

h(βn)− c− ż(βn)
) z(βn)

βn − ρ
≤ −λ2 − λ

(
c− h(βn)

)
.

If c ≥ h(ρ) we have limn→∞−λ2−λ
(
c− h(βn)

)
= −λ2−λ(c−h(ρ)) ≤ −λ2.

This contradicts (3.2) because of ` = 0.
If c < h(ρ), then we can choose λ < h(ρ)− c and get, by (3.2),

ż(αn) = h(αn)− c−
D(αn)g(αn)

αn−ρ

λ
→ h(ρ)− c > λ,

when n→∞. But by (3.4)1 we have ż(αn) ≤ λ, that cannot be.
Therefore, up to now we proved that z is differentiable at ρ. The as-

sumption ` = 0 together with (3.2) imply

either ż(ρ) = 0 or ż(ρ) = h(ρ)− c. (3.5)
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Now, we prove (3.3)1. If c = h(ρ), then we have ż(ρ) = 0. If c > h(ρ),
then ż(ρ) = h(ρ) − c should imply z(ϕ) > 0 in a left neighborhood of ρ, a
contradiction; then, ż(ρ) = 0. If c < h(ρ), by the positivity of both D and g
it follows that every solution z of problem (3.1) satisfies

ż(ϕ) = h(ϕ)− c− D(ϕ)g(ϕ)

z(ϕ)
> h(ϕ)− c, ϕ ∈ (0, ρ),

and then lim inf
ϕ→ρ−

ż(ϕ) ≥ h(ρ)− c. Since c < h(ρ), we can find η > 0 such that

ż(ϕ) ≥ h(ρ)− c− h(ρ)− c
2

=
h(ρ)− c

2
=: σ > 0, ϕ ∈ (ρ− η, ρ).

As a consequence, by the Mean Value Theorem we have

−z(ϕ) = −z(ϕ) + z(ρ) = ż(ξ)(ρ− ϕ) > σ(ρ− ϕ), ϕ ∈ (ρ− η, ρ),

with ξ ∈ (ϕ, ρ). Therefore we deduce z(ϕ) < σ(ϕ− ρ) for ϕ ∈ (ρ− η, ρ) and,
in turn, ż(ρ) ≥ σ. By (3.5) we conclude that ż(ρ) = h(ρ)− c.

(ii) −∞ < ` < 0. We argue again by contradiction. If ż(ρ) does not
exist, then 0 ≤ D−z(ρ) < D−z(ρ) ≤ ∞ and we can find sequences {αn},
{βn} as in (3.4) for any λ ∈

(
D−z(ρ), D−z(ρ)

)
. By (3.2) we have

λ ≥ ż(αn) = h(αn)− c−
D(αn)g(αn)

αn−ρ

λ
→ h(ρ)− c− `

λ
, as n→∞,

and then λ2 −
(
h(ρ)− c

)
λ + ` ≥ 0. Similarly, by means of {βn}, we obtain

that λ2− (h(ρ)−c)λ+ ` ≤ 0. The two last inequalities and the sign condition
of λ imply

λ =
h(ρ)− c+

√
(h(ρ)− c)2 − 4`

2
.

This contradicts the arbitrariness of λ. Hence ż(ρ) exists and we denote
µ := ż(ρ) ∈ [0,∞]. By the assumption −∞ < ` < 0, from (3.2) we obtain
that ż(ϕ) has a limit for ϕ → ρ− and it has to be µ. Again by (3.2), by
passing to the limit for ϕ → ρ− we deduce µ2 −

(
h(ρ)− c

)
µ + ` = 0 and,

since µ ≥ 0, this implies (3.3)2. �

We notice that ż is continuous at ρ if ż(ρ) 6= 0; this smoothness is not
granted in general.

4. Existence of semi-wavefront solutions

We first prove in this section that, even if sharp profiles lose regularity at
the point ξ where they reach the value ρ, nevertheless some smoothness still
holds, see (4.1). Indeed, that property is also satisfied by every non-strictly
monotone classical profile. In the second part of the section we prove Theo-
rems 2.3 and 2.4.
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Proposition 4.1. Assume (D) and (g). If ϕ is a classical or sharp semi-
wavefront profile from ρ, then

lim
ξ→ξ

D
(
ϕ(ξ)

)
ϕ′(ξ) = 0, (4.1)

where ξ is defined in (2.2). An analogous result holds in the case of semi-
wavefront profiles to ρ.

Proof. For simplicity, in the following we only consider the case of profiles
from ρ. If ϕ is a classical profile, then ϕ′(ξ)→ 0 as ξ → −∞ [8, Lemma 6.4]
and (4.1) is satisfied. If ϕ is sharp, then ξ ∈ R and

ϕ(ξ) = ρ, for all ξ ≤ ξ. (4.2)

If ϕ ′(ξ
+

) ∈ R, then (4.1) is satisfied again. Therefore, it remains to consider
the case

ϕ ′(ξ
+

) = −∞, (4.3)

see profile ϕ3 in Figure 2. We fix ε > 0, denote Iε = (ξ− ε, ξ+ ε) ⊂ (−∞, $)
and consider ψ ∈ C∞0 (Iε). It follows from (2.1) that

0 =

∫
Iε

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

=

∫ ξ

ξ−ε
+

∫ ξ+ε

ξ

{(D(ϕ)ϕ′ − f(ϕ) + cϕ
)
ψ′ − g(ϕ)ψ

}
dξ. (4.4)

About the first integral in (4.4), from (g) and (4.2) we deduce∫ ξ

ξ−ε

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

=
[
cρ− f(ρ)

] ∫ ξ

ξ−ε
ψ′ dξ =

[
cρ− f(ρ)

]
ψ(ξ). (4.5)

About the second one, we must be more careful because of (4.3). Then we
fix 0 < δ < ε and notice that∫ ξ+ε

ξ+δ

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

= −
(
D
(
ϕ(ξ + δ)

)
ϕ′(ξ + δ)− f

(
ϕ(ξ + δ)

)
+ cϕ(ξ + δ)

)
ψ(ξ + δ)

−
∫ ξ+ε

ξ+δ

((
D(ϕ)ϕ ′

) ′
+
(
c− h(ϕ)

)
ϕ ′ + g(ϕ)

)
ψ dξ

= −
(
D
(
ϕ(ξ + δ)

)
ϕ′(ξ + δ)− f

(
ϕ(ξ + δ)

)
+ cϕ(ξ + δ)

)
ψ(ξ + δ),
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because (1.2) holds a.e. in (ξ + δ, ξ + ε). Then, we have

∫ ξ+ε

ξ

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

= lim
δ→0+

∫ ξ+ε

ξ+δ

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

= − lim
δ→0+

D
(
ϕ(ξ + δ)

)
ϕ′(ξ + δ)ψ(ξ + δ) +

[
f(ρ)− cρ

]
ψ(ξ). (4.6)

By combining (4.4), (4.5) and (4.6) we obtain

lim
δ→0+

D
(
ϕ(ξ + δ)

)
ϕ′(ξ + δ)ψ(ξ + δ) = 0.

Since we can choose ψ such that ψ(ξ) 6= 0, then D
(
ϕ(ξ)

)
ϕ′(ξ) → 0 as

ξ → ξ
+

. �

Now we prove a sort of converse of Proposition 4.1, namely that con-
dition (4.1) allows to extend profiles defined in a bounded interval to semi-
wavefront profiles.

Proposition 4.2. Assume (D) and (g). Let ϕ : (α,$)→ [0, ρ] be a monotone,
non-constant, classical profile in (α,$) with limξ→α+ ϕ(ξ) = ρ. If moreover

lim
ξ→α+

D
(
ϕ(ξ)

)
ϕ′(ξ) = 0, (4.7)

then the function

ϕ̃(ξ) :=

{
ρ if ξ ∈ (−∞, α],
ϕ(ξ) if ξ ∈ (α,$),

is a semi-wavefront profile from ρ. A similar result holds for semi-wavefront
solutions to ρ.

Proof. We only have to show that ϕ̃ is a solution in a neighborhood of α in
the sense of Definition 2.1. By contradiction, we assume that there exist an
interval (a, b) with a < α < b < $ and a function ψ ∈ C∞0 (a, b) such that∫ b

a

{(
D(ϕ̃)ϕ̃′ − f(ϕ̃) + cϕ̃

)
ψ′ − g(ϕ̃)ψ

}
dξ 6= 0. (4.8)

Notice that D(ϕ̃)ϕ̃′ ∈ L1
loc(−∞, $) because of (4.7). We have ϕ̃(ξ) ≡ ρ for

ξ ∈ (a, α) and ϕ̃ is a classical solution in (α + δ, b) for every positive δ with
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α+ δ < b. It follows from (g) and (1.2) that∫ b

a

{(
D(ϕ̃)ϕ̃′ − f(ϕ̃) + cϕ̃

)
ψ′ − g(ϕ̃)ψ

}
dξ

=

{∫ α

a

+

∫ b

α

}{(
D(ϕ̃)ϕ̃′ − f(ϕ̃) + cϕ̃

)
ψ′ − g(ϕ̃)ψ

}
dξ

=
(
cρ− f(ρ)

)
ψ(α) + lim

δ→0+

∫ b

α+δ

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ

=
(
cρ− f(ρ)

)
ψ(α)

− lim
δ→0+

(
D(ϕ(α+ δ))ϕ′(α+ δ)− f(ϕ(α+ δ)) + cϕ(α+ δ)

)
ψ(α+ δ)

=
(
cρ− f(ρ)

)
ψ(α) +

(
f(ρ)− cρ

)
ψ(α) = 0,

which contradicts (4.8). �

Now, we prove Theorem 2.3.

Proof of Theorem 2.3. We begin by assuming (D) and we first consider the
case of semi-wavefronts from ρ. The case of semi-wavefronts to ρ is deduced
at the end of the proof by a change of variables.

We prove that the existence of a strict semi-wavefront from ρ of (1.1)
with speed c is equivalent to the solvability of the boundary-value problem
(3.1); our reasoning also allows to distinguish between classical and sharp
profiles. Since problem (3.1) is always solvable, see Section 3, this proves the
first statement of the theorem.

We begin by assuming that ϕ is a strict semi-wavefront profile from
ρ; then, the solvability of (3.1) follows as in [8, Theorem 2.5]. Indeed, the
profile ϕ is invertible [8, Proposition 6.1] and its inverse function ξ = ξ(ϕ)
is defined for ϕ ∈ [0, ρ) [8, Remark 6.3]. The function z(ϕ) = D(ϕ)ϕ ′

(
ξ(ϕ)

)
satisfies the equation in (3.1); moreover, z(ϕ) < 0 for ϕ ∈ (0, ρ) and z(0+) ≤
0 [8, Lemma 6.1 (ii)]. Finally, we have that z(ρ−) = 0 by the property
limξ→ξD

(
ϕ(ξ)

)
ϕ′(ξ) = 0 by Proposition 4.1. Therefore z satisfies problem

(3.1).

Conversely, assume that problem (3.1) is solvable. The proof of [8, Theo-
rem 2.5] exploits the assumption D(ρ) > 0 and then must be suitably adapted
to the current situation. Let z(ϕ) be a solution of (3.1) for some c ∈ R and
ϕ(ξ) be the solution of the initial-value problem{

ϕ ′(ξ) = z(ϕ)
D(ϕ) ,

ϕ(0) = ρ
2 ,

(4.9)

in its maximal existence interval (α,$), for α ∈ [−∞, $); this means that ϕ
satisfies

lim
ξ→α+

ϕ(ξ) = ρ, lim
ξ→$−

ϕ(ξ) = 0.

The proof that ϕ is a strict solution, i.e. $ ∈ R, is analogous to that of [8,
Theorem 2.2] because it only involves the values of D near ϕ = 0. Then, it
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remains to investigate the behavior of ϕ(ξ) near ξ = α and, in particular, to
describe the type of ϕ at that point.

Let ξ be as in (2.2) and notice that, by definition of z,

lim
ξ→ξ+

ϕ ′(ξ) = lim
ϕ→ρ−

z(ϕ)

D(ϕ)
. (4.10)

Whether ϕ is sharp or classical depends on the value of the limit in the
right-hand side of (4.10), which in turn depends on the value of c because of
Proposition 3.2; notice that ` = 0 in Proposition 3.2 since we are assuming
(D). We distinguish four cases.

(i) Case c < h(ρ). By Proposition 3.2 we have

lim
ξ→ξ+

ϕ ′(ξ) = lim
ϕ→ρ−

z(ϕ)

D(ϕ)
=

{
h(ρ)−c
Ḋ(ρ)

if Ḋ(ρ) < 0,

−∞ if Ḋ(ρ) = 0.

In both cases this implies ξ ∈ R and then ϕ(ξ) = ρ. Moreover, we have

lim
ξ→ξ+

D
(
ϕ(ξ)

)
ϕ ′(ξ) = lim

ϕ→ρ−
z(ϕ) = 0.

Then

ϕ̃(ξ) =

{
ρ if ξ ∈ (−∞, ξ],
ϕ(ξ) if ξ ∈ (ξ,$),

(4.11)

is a sharp semi-wavefront profile from ρ by Proposition 4.2.

(ii) Case c ≥ h(ρ) and Ḋ(ρ) < 0. Arguing as in case (i) we obtain that
the limit in (4.10) is 0. If ξ = −∞, then the function ϕ is a classical semi-
wavefront profile from ρ. If ξ ∈ R, then the function ϕ̃ defined in (4.11) is a
classical semi-wavefront profile from ρ.

(iii) Case c > h(ρ) and Ḋ(ρ) = 0. In this case the situation is more
delicate and we need to introduce an upper-solution for the equation in (3.1).
Let {ψn} ⊂ (0, ρ) be a sequence converging to ρ. By Proposition 3.2 we
deduce

z(ψn)

ψn − ρ
→ ż(ρ) = 0

as n → ∞. By applying the Mean Value Theorem in every interval [ψn, ρ],
we obtain a new sequence {ϕn} ⊂ (ψn, ρ), which again converges to ρ and
satisfies ż(ϕn)→ 0 as n→∞. Therefore, by (1.7), we have

D(ϕn)g(ϕn)

z(ϕn)
→ h(ρ)− c

and then
z(ϕn)

D(ϕn)
→ 0 (4.12)

because g(ρ) = 0. Fix ε > 0 and denote η(ϕ) := −εD(ϕ). By (D) and (g) we
have

h(ϕ)− c− D(ϕ)g(ϕ)

η(ϕ)
= h(ϕ)− c+

g(ϕ)

ε
→ h(ρ)− c < 0 as ϕ→ ρ−.
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Since η̇(ρ) = 0, we can find δ > 0 such that

η̇(ϕ) > h(ϕ)− c− D(ϕ)g(ϕ)

η(ϕ)
, ϕ ∈ (ρ− δ, ρ). (4.13)

Hence, the function η is an upper-solution for (1.7) by (4.13) in the interval
(ρ− δ, ρ). For any ϕ ∈ (ρ− δ, ρ), by (4.12) there exists ϕN ∈ (ϕ, ρ) satisfying
z(ϕN ) > −εD(ϕN ) = η(ϕN ). By a classical comparison argument [8, Lemma
3.2 2(ii)]L: [8, Lemma 4.2 2(ii)], we obtain that η(σ) < z(σ) for σ ∈ (ρ−δ, ϕN ]
and then, since ϕ ∈ (ρ− δ, ρ) was arbitrary,

z(ϕ) > η(ϕ), ϕ ∈ (ρ− δ, ρ). (4.14)

By (4.14) and the definition of η we have

−ε < z(ϕ)

D(ϕ)
< 0, ϕ ∈ (ρ− δ, ρ),

and then

lim
ϕ→ρ−

z(ϕ)

D(ϕ)
= 0.

As in case (ii), this means that ϕ is a classical semi-wavefront profile from ρ.

(iv) Case c − h(ρ) = Ḋ(ρ) = 0. In this borderline case we show by an
example that ϕ can be either classical or sharp. We consider the special case
h(ϕ) ≡ 0; then the solution to problem (3.1) with c = 0 can be explicitly
computed and is

z(ϕ) = −

√
2

∫ ρ

ϕ

D(s)g(s) ds, ϕ ∈ [0, ρ].

We further assume that

D(ϕ) = (ρ− ϕ)α, g(ϕ) = (ρ− ϕ)β , with α > 1, β > 0. (4.15)

In particular, we require α > 1 in order that Ḋ(ρ) = 0. Then we obtain that

z(ϕ) = −µ(ρ− ϕ)
α+β+1

2 , for ϕ ∈ (0, ρ) and µ :=

√
2

α+ β + 1
.

We deduce

lim
ϕ→ρ−

z(ϕ)

D(ϕ)
= −µ lim

ϕ→ρ−
(ρ− ϕ)

α+β+1
2 −α = −µ lim

ϕ→ρ−
(ρ− ϕ)

−α+β+1
2

=


0 if α− β < 1,
−(β + 1)−1/2 if α− β = 1,
−∞ if α− β > 1.

As a consequence, the corresponding semi-wavefront solution has a classical
profile in the first case and a sharp profile in the remaining two cases.

Now, we assume (D̃). We can argue as above because of the existence
result of Lemma 3.1. The only difference consists in the computation of the
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limit in (4.10). Indeed, since ż(ρ) exists and is finite by Proposition 3.2, it
follows

lim
ξ→ξ+

ϕ ′(ξ) = lim
ϕ→ρ−

z(ϕ)

D(ϕ)
= lim
ϕ→ρ−

z(ϕ)
ϕ−ρ
D(ϕ)
ϕ−ρ

=
ż(ρ)

−∞
= 0, (4.16)

where ξ is defined in (2.2). Then every semi-wavefront profile is classical as
in the proof above, case (ii).

This concludes the proof in the case of semi-wavefronts from ρ. By the
change of variables exploited in [8, Theorem 2.7], the existence of a semi-
wavefront solution to ρ with speed c for (1.1) is equivalent to the existence of
a semi-wavefront solution from ρ and speed −c of the equation ρt−h(ρ)ρx =(
D(ρ)ρx

)
x

+ g(ρ), for (x, t) ∈ R× [0,∞). �

Remark 4.3. The type of the profile in the critical case c− h(ρ) = Ḋ(ρ) = 0
also depends on the order of vanishing of h(ρ) − c and not only on that of
D(ρ) and g(ρ), as shown by an example in the proof above. More precisely,
in addition to (4.15), we require

c− h(ϕ) ∼ (ρ− ϕ)γ , z(ϕ) ∼ (ρ− ϕ)δ, (4.17)

for some γ > 0 and δ > 1 by Proposition 3.2. Here f ∼ g means that
limϕ→ρ f(ϕ)/g(ϕ) is a non-zero real number. While the former expression in
(4.17) is simply an assumption, the latter should be proved; as a consequence,
our analysis is merely formal. By (3.1) we deduce (ρ − ϕ)δ−1 ∼ (ρ − ϕ)γ +
(ρ− ϕ)α+β−δ for ϕ→ ρ−.

If γ ≥ α+ β − δ, then δ− 1 = α+ β − δ. This implies δ = 1
2 (α+ β + 1)

and in turn γ ≥ 1
2 (α+ β − 1). Then

z(ϕ)

D(ϕ)
∼ (ρ− ϕ)

1
2 (β−α+1)

and the discussion is as in case (iv) of the proof of Theorem 2.3.
If γ < α+ β − δ, however, then δ − 1 = γ and γ < 1

2 (α+ β − 1). Then

z(ϕ)

D(ϕ)
∼ (ρ− ϕ)γ−α+1

so that the discussion is analogous to that of the previous case but with γ
replacing β. Therefore, in this case, ϕ is classical if α − γ < 1 and sharp if
α− γ ≥ 1.

We conclude this section by proving Theorem 2.4.

Proof of Theorem 2.4. Consider the equation

ρt + f̂(ρ)x =
(
D̂(ρ)ρx

)
x

+ ĝ(ρ), t ≥ 0, x ∈ R, (4.18)

where

f̂(ρ) = −f(ρ− ρ), D̂(ρ) = D(ρ− ρ), ĝ(ρ) = −g(ρ− ρ), for ρ ∈ [0, ρ].
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We denote ĥ(ρ) := f̂ ′(ρ) = h(ρ − ρ); remark that ĝ satisfies (g) and D̂ ∈
C1[0, ρ].

We notice that ϕ is a classical solution of (1.2) in I with speed c if and
only if ψ(ξ) = ρ− ϕ(ξ) is a classical solution of(

D̂(ψ)ψ ′
) ′

+
(
c− ĥ(ψ)

)
ψ ′ + ĝ(ψ) = 0 (4.19)

in I for the same speed c. As a consequence, equation (4.18) has a classi-
cal semi-wavefront solution from ρ if and only if (1.1) has a classical semi-

wavefront solution from 0. If D(0) = 0, i.e. if D̂(ρ) = 0, then sharp semi-
wavefronts from ρ for (4.18) appear (see Theorem 2.3) and their profiles ψ
solve equation (4.19). By Proposition 4.1 these profiles satisfy

lim
ξ→ξ+

D̂
(
ψ(ξ)

)
ψ′(ξ) = 0,

where ξ := inf
{
ξ < $ : ψ(ξ) < ρ

}
= inf

{
ξ < $ : ϕ(ξ) > 0

}
. Since

lim
ξ→ξ+

D
(
ϕ(ξ)

)
ϕ′(ξ) = − lim

ξ→ξ+
D̂
(
ψ(ξ)

)
ψ′(ξ),

then ϕ is a sharp semi-wavefront profile of (1.1) from 0 with the same c.
The converse implication is also true. An analogous discussion is valid for
semi-wavefront solutions to 0. The theorem is proved. �

5. Strictly monotone solutions

In this section we prove Theorem 2.5.

Proof of Theorem 2.5. We only prove the result in the case of semi-wavefronts
from ρ; for semi-wavefronts to ρ the result is deduced as in the proof of
Theorem 2.3. We assume without any loss of generality that the estimates
on g in the statement hold in the whole interval [0, ρ].

(i) We assume g(ρ) ≤ L(ρ − ρ) and c > h(ρ). In fact, both here and
in the following item, in the case c < h(ρ) the profile is sharp and then it
is non-strictly monotone. Let ϕ be a semi-wavefront in (−∞, $) with speed
c and denote by z(ϕ), ϕ ∈ [0, ρ], the solution of (3.1) with the same wave
speed c. For n ∈ N we define

ηn(ϕ) = D(ϕ)

[
a (ϕ− ρ)− 1

n

]
, (5.1)

where the constant a is chosen to satisfy

a >
L

c− h(ρ)
> 0. (5.2)

We claim that there exist n > 0 and δ > 0, which only depends on n, such
that for every n > n we have that ηn(z) is a strict upper-solution of (1.7) in
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[ρ− δ, ρ). This amounts to show that (see [8, Definition 4.2])

η̇n(ϕ)− h(ϕ) + c+
D(ϕ)g(ϕ)

ηn(ϕ)
> 0, ϕ ∈ (ρ− δ, ρ). (5.3)

We consider (5.3); by the assumption on g we deduce

−
(
−h(ϕ) + c+

D(ϕ)g(ϕ)

ηn(ϕ)

)
− η̇n(ϕ)

= −

(
−h(ϕ) + c+

g(ϕ)

a(ϕ− ρ)− 1
n

)
+ Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

]
− aD(ϕ)

(5.4)

< h(ϕ)− c+
g(ϕ)

a(ρ− ϕ) + 1
n

+ Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

]
< h(ϕ)− c+

L(ρ− ϕ)

a
(
ρ− ϕ+ 1

an

) + Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

]
< h(ϕ)− c+

L

a
+ Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

]
.

By (5.2) we have that

lim
ϕ→ρ−
n→∞

(
h(ϕ)− c+

L

a
+ Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

])
= h(ρ)− c+

L

a
< 0.

Hence, for every ε > 0 there exist n > 0 and δ > 0 such that

h(ϕ)− c+
L

a
+ Ḋ(ϕ)

[
a (ρ− ϕ) +

1

n

]
< −ε2 < 0, for n > n, ϕ ∈ (ρ− δ, ρ),

which implies (5.3) and, then, our claim.

By (3.3) we have

lim
ϕ→ρ−

z(ϕ)− z(ρ)

ϕ− ρ
= ż(ρ) = 0.

Consider a sequence {ψp} ⊂ (0, ρ) converging to ρ. Thanks to (3.1) and the
Mean Value Theorem, for every p ∈ N there exists θp ∈ (ψp, ρ) such that

ż(θp) =
z(ψp)

ψp − ρ
and hence

θp → ρ, ż(θp)→ 0. (5.5)

By substituting θp in (1.7), we obtain

D(θp)g(θp)

z(θp)
= h(θp)− c− ż(θp). (5.6)

By (g), the estimate on g, (5.5), and (5.6) we find

lim
p→∞

D(θp)

z(θp)
= − lim

p→∞

c− h(θp) + ż(θp)

g(θp)
= −∞,
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and then we can find a subsequence {θpn} such that

D(θpn) > −nz(θpn), (5.7)

for n ∈ N. We can assume θpn ∈ (ρ − δ, ρ) for all n > n; by (5.1) and (5.7)
we deduce

ηn(θpn)

z(θpn)
=
D(θpn)

[
a(ρ− θpn) + 1

n

]
−z(θpn)

> n

[
a(ρ− θpn) +

1

n

]
> 1, for n ∈ N.

Hence

ηn(θpn) < z(θpn) for n ∈ N. (5.8)

Thanks to (5.3) and (5.8), we can apply [8, Lemma 4.3 (2.ii)] to the interval
(ρ− δ, θpn ], because η(ϕ) < 0, and conclude that

z(ϕ) > ηn(ϕ), for ϕ ∈ (ρ− δ, θpn) and n > n. (5.9)

Let ξ(ϕ) be the inverse function of the function ϕ in [0, ρ), see [8, Remark
6.3], and ξ as in (2.2); then, by (5.9), the definitions of z and ηn we have

ξ − ξ (ρ− δ) = lim
n→∞

∫ θpn

ρ−δ
ξ ′(ϕ) dϕ = lim

n→∞

∫ θpn

ρ−δ

1

ϕ ′
(
ξ(ϕ)

) dϕ
= lim
n→∞

∫ θpn

ρ−δ

D(ϕ)

z(ϕ)
dϕ < lim

n→∞

∫ θpn

ρ−δ

D(ϕ)

ηn(ϕ)
dϕ

= lim
n→∞

∫ θpn

ρ−δ

1

a (ϕ− ρ)− 1
n

dϕ

=
1

a
lim
n→∞

ln

∣∣∣∣∣a
(
θpn − ρ

)
− 1

n

−aδ − 1
n

∣∣∣∣∣ = −∞.

Hence, ξ = −∞.

(ii) We assume g(ρ) ≥ L(ρ − ρ)α for α ∈ (0, 1) and c ≥ h(ρ). We fix a
value β ∈ (α+1

2 , 1) and define

h := min
ϕ∈[ρ/2,ρ]

(
h(ϕ)− c

)
, −σ2 := min

ϕ∈[ρ/2,ρ]
Ḋ(ϕ), M := max

ϕ∈[ρ/2,ρ]
D(ϕ).

(5.10)

For every n ∈ N with ρ
2 < ρ − 1

n , we introduce the function ωn : [ρ2 , ρ] → R
defined by

ωn(ϕ) =

{
−kD(ϕ)(ρ− 1

n − ϕ)β if ϕ ∈ [ρ2 , ρ−
1
n ],

0 if ϕ ∈ (ρ− 1
n , ρ],

where k is a positive constant, see Figure 6. By choosing a suitable k, we
claim that

ωn(ϕ) ≥ z(ϕ), ϕ ∈ [ρ/2, ρ]. (5.11)

Indeed, since z(ϕ) < 0 for ϕ ∈ (0, ρ), by a continuity argument we can

find ψn ∈ (ρ2 , ρ −
1
n ) such that ωn(ϕ) ≥ z(ϕ) in [ψn, ρ]. If we show that ωn

is a strict lower-solution of (1.7) on [ρ2 , ψn], then we can apply [8, Lemma
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ϕ

ωn
ρψn ρ− 1

nρ/2

ωn z

Figure 6. The function z (thin line) and the upper-solution
ωn (thick line).

4.3(2.i)] in the interval (ρ2 , ψn], because ωn(ϕ) < 0 in [ρ2 , ρ −
1
n ], and prove

(5.11).

By the assumption on g and (5.10), we obtain, for ϕ ∈ [ρ2 , ψn],

h(ϕ)− c− D(ϕ)g(ϕ)

ωn(ϕ)
= h(ϕ)− c+

D(ϕ)g(ϕ)

kD(ϕ)(ρ− 1
n − ϕ)β

≥h+
L(ρ− ϕ)α

k(ρ− 1
n − ϕ)β

= h+
L(ρ− ϕ)α

k(ρ− 1
n − ϕ)α

· 1

(ρ− 1
n − ϕ)β−α

≥h+
L

k

1

(ρ− 1
n − ϕ)β−α

. (5.12)

Now, we introduce the function γn : [ρ2 , ψn]→ R defined by

γn(ϕ) = h+
L

k

1

(ρ− 1
n − ϕ)β−α

− ω̇n(ϕ).

We must show that γn(ϕ) ≥ 0. Since 0 < ρ − 1
n − ϕ < ρ

2 for ϕ ∈ [ρ2 , ψn], it

follows from (5.10) that, for ϕ ∈ [ρ2 , ψn),

γn(ϕ) = h+
L

k

1

(ρ− 1
n − ϕ)β−α

+ kḊ(ϕ)

(
ρ− 1

n
− ϕ

)β
− kβD(ϕ)

(
ρ− 1

n
− ϕ

)β−1
≥ h+

L

k

1

(ρ− 1
n − ϕ)β−α

− kσ2

(
ρ− 1

n
− ϕ

)β
−Mkβ

(
ρ− 1

n
− ϕ

)β−1
> h− kσ2

(
ρ

2

)β
+

1

(ρ− 1
n − ϕ)β−α

[
L

k
−Mkβ

(
ρ− 1

n
− ϕ

)2β−(1+α)
]

≥ h− kσ2

(
ρ

2

)β
+

1(
ρ
2

)β−α [Lk −Ak
]
, (5.13)

where A = Mβ(ρ/2)2β−(1+α). If k is sufficiently small, then the right hand
side of (5.13) is positive and then γn(ϕ) > 0. Hence, ωn is a strict lower-

solution of (1.7) on (ρ2 , ψn] and claim (5.11) is proved.
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The sequence {ωn}n is monotone and therefore we can define

ω(ϕ) := lim
n→∞

ωn(ϕ) = −kD(ϕ)(ρ− ϕ)β , ϕ ∈ [ρ/2, ρ].

By (5.11) we have ω(ϕ) ≥ z(ϕ) for ϕ ∈ [ρ2 , ρ]. Let ξ(ϕ) be as in (i) and ξ as
in (2.2). It follows from the definition of z that

ξ − ξ
(
ρ

2

)
=

∫ ρ

ρ
2

ξ ′(ϕ) dϕ =

∫ ρ

ρ
2

1

ϕ ′
(
ξ(ϕ)

) dϕ =

∫ ρ

ρ
2

D(ϕ)

z(ϕ)
dϕ

≥
∫ ρ

ρ
2

D(ϕ)

ω(ϕ)
dϕ = −1

k

∫ ρ

ρ
2

1

(ρ− ϕ)β
dϕ = − 1

k(1− β)

(
ρ

2

)1−β

.

Therefore ξ ∈ R and so ϕ(ξ) ≡ ρ for ξ ≤ ξ. �

6. Convergence of semi-wavefronts to wavefronts

In this section we prove Theorem 2.6. Again the discussion is based on the
first-order problem (3.1); solutions to this problem are provided in Lemma
3.1 under (g) and in [19, Theorem 2.2] under (g0). In particular, if g = g1
satisfies (g0) then problem (3.1) admits solutions with z(0) = 0 if and only if
c ≥ c∗1; only these solutions are interesting since they correspond to wavefront
profiles. If g = g2 satisfies (g) then problem (3.1) admits solutions for every
c ∈ R and all of them correspond to semi-wavefront profiles.

The following lemma gives a comparison result between solutions of
(3.1). For simplicity, we do not state it in full generality but focus on what
we need below.

Lemma 6.1. Assume (D̂) or (D̃) and let g1 ≤ g2 be continuous functions in
[0, ρ] with g1 satisfying either (g0) or (g) and g2 satisfying (g). Let c1, c2 ∈ R
with c2 ≤ c1 and c∗1 ≤ c2 when g1(0) = 0. Denote with zi the solution of
problem (3.1) with c = ci and g = gi, i = 1, 2. Then

z1(ϕ) ≥ z2(ϕ) for every ϕ ∈ [0, ρ]. (6.1)

Proof. We split the proof into two cases.

(i) Assume c1 > c2. In this case we prove a bit more than (6.1), namely we
claim

z1(ϕ) > z2(ϕ) for every ϕ ∈ (0, ρ).

If there exists ϕ0 ∈ (0, ρ) such that z1(ϕ0) ≤ z2(ϕ0), we have

ż1(ϕ0) = h(ϕ0)− c1 +
D(ϕ0)g1(ϕ0)

−z1(ϕ0)
< h(ϕ0)− c2 +

D(ϕ0)g2(ϕ0)

−z2(ϕ0)
= ż2(ϕ0).

Hence z2(ϕ) > z1(ϕ) for ϕ in a right neighborhood of ϕ0; by repeat-
ing the same reasoning we arrive to the contradictory conclusion that
z2(ρ) > z1(ρ) = 0. This proves the claim.
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(ii) Assume c1 = c2. Let {ĉn}n≥1 be a sequence decreasing to c1 = c2 and
denote with ζn the corresponding solutions of (3.1) with c = ĉn and
g = g1; we emphasize that ζn exists either because of Lemma 3.1 (if
g1 satisfies (g)) or by [19, Theorem 2.2] (if g1 satisfies (g0)). By (i)
we deduce that ζn > z2 in (0, ρ), for all n ≥ 1 and that {ζn}n≥1 is
a decreasing sequence. Let z1(ϕ) := lim

n→∞
ζn(ϕ), for ϕ ∈ [0, ρ]. By the

Monotone Convergence Theorem it is easy to show that z1 is a solution

of ż = h(ϕ)− c1 − D(ϕ)g1(ϕ)
z(ϕ) with z1(ρ) = 0 and z1(0) = 0 if g1(0) = 0;

by applying Lemma 3.1 or [19, Theorem 2.2] according that g1 satisfies
(g) or (g0), we obtain that z1 is the (unique) solution of (3.1) when
c = c1 and g = g1. At last, the estimate follows since ζn > z2 in (0, ρ)
for all n ≥ 1 implies that z1 ≥ z2 there and the proof is complete. �

For n ≥ 0 we denote with (Pn) the first-order problem (3.1) corre-
sponding to g = gn and to c ≥ c∗0. The following proposition deals with the
convergence of {zn}n≥1.

Proposition 6.2. Assume (D̂) or (D̃) and let g0 and {gn}n≥1 be as in Theorem
2.6. Let zn be the solution of (Pn), with n ≥ 0, for a given c ≥ c∗0.

Then, the sequence {zn}n≥1 is increasing, satisfies zn(ϕ) ≤ z0(ϕ) for
ϕ ∈ [0, ρ] and zn → z0 uniformly in every interval [a, b] ⊂ (0, ρ).

Proof. The first two claims follow from Lemma 6.1 and we are left to prove
the convergence. Define

z̃(ϕ) := lim
n→∞

zn(ϕ), ϕ ∈ [0, ρ].

By the monotonicity of {zn}n≥1 we have that z̃ ≤ z0; we want to show that
z̃ = z0. In every interval [a, b] ⊂ (0, ρ) we obtain

0 <
D(ϕ)gn(ϕ)

−zn(ϕ)
≤ D(ϕ)g1(ϕ)

−z0(ϕ)
≤
D(ϕ) max

ϕ∈[a,b]
g1(ϕ)

− max
ϕ∈[a,b]

z0(ϕ)
, ϕ ∈ (0, ρ). (6.2)

This implies that the convergence

D(ϕ)gn(ϕ)

−zn(ϕ)
→ D(ϕ)g0(ϕ)

−z̃(ϕ)

is dominated [22] in [a, b]. So, we can use the Dominated Convergence The-
orem to show that z̃ solves the same problem (3.1) of z0. If z̃(0) = 0, then
z̃ = z0 by [19, Theorem 2.2]. Now we prove that the remaining case z̃(0) < 0
is not possible and hence the convergence is proved. We reason as in the proof
of case (c) in [8, Theorem 2.6]. More precisely, z̃(0) < 0 = z0(0) implies the
existence of δ ∈ (0, ρ) such that z̃(ϕ) < z0(ϕ) in (0, δ) and then

ż0(ϕ)− ˙̃z(ϕ) =
D(ϕ)g0(ϕ)

−z0(ϕ)
− D(ϕ)g0(ϕ)

−z̃(ϕ)
> 0, for ϕ ∈ (0, δ).
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Then, it cannot happen that z̃(ϕ0) = z0(ϕ0) for some ϕ0 ∈ [δ, ρ); hence
z̃ < z0 in [0, ρ) and then z0 − z̃ is strictly increasing in [0, ρ). This implies

lim
ϕ→ρ−

(
z0(ϕ)− z̃(ϕ)

)
> z0(0)− z̃(0) > 0,

in contradiction with z̃(ρ−) = z0(ρ−) = 0. At last, again by (6.2), we have
that the convergence is uniform in every interval [a, b] ⊂ (0, ρ). �

Proof of Theorem 2.6. The existence of the solutions ϕn is guaranteed by
Theorem 2.3 when either (D̃) or (D) hold; in the remaining case, namely

when (D̂) holds and D(ρ) > 0, the existence of ϕn follows by [8, Theorem
2.7]. About the existence of ϕ0 we refer to [19]; we point out when D(0) =

Ḋ(0) = 0 and/or D(ρ) = Ḋ(ρ) = 0, the existence of ϕ0 can be proved under
further assumptions on D and g, see [19].

Assume c ≥ c∗0. Arguing as in the proof of Theorem 2.3, it is easy to
show that ϕn, for n ≥ 0, is the classical solution of the initial-value problem{

ϕ′ = zn(ϕ)
D(ϕ) ,

ϕ(0) = ρ
2 ,

(6.3)

on its maximal existence interval (σn, τn), with −∞ ≤ σn < 0 < τn ≤ +∞,
i.e., ϕn(σ+

n ) = ρ, ϕn(τ−n ) = 0. Let [α, β] ⊂ (σ0, τ0) be a fixed interval such
that ϕ0([α, β]) = [a, b] ⊂ (0, ρ). According to Proposition 6.2, we have that
zn → z0 uniformly in [a, b]. By the continuous dependence of the solution on
a parameter [7, Ch. 2, Theorem 4.1], ϕn is defined on [α, β] for a sufficiently
large n and ϕn → ϕ0 uniformly on [α, β].

Moreover

ϕ′n(ξ) =
zn
(
ϕn(ξ)

)
D
(
ϕn(ξ)

) → z0
(
ϕ0(ξ)

)
D
(
ϕ0(ξ)

) = ϕ′0(ξ)

uniformly on [α, β]. This completes the proof. �

The last result of this section concerns some comparison properties, see
Figure 7.

ξ

ϕ

ρ

ρ
2

ϕ0

ϕ0

ϕn

ϕn
$n

ϕn+1

ϕn+1

$n+1

Figure 7. The profiles in the case g0(ϕ) < gn(ϕ) and
gn(ϕ) > gn+1(ϕ) for every ϕ ∈ [0, ρ].
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Corollary 6.3. Under the hypotheses of Theorem 2.6 assume g0(ϕ) < gn(ϕ)
for ϕ ∈ (0, ρ). Then

ϕ0(ξ) < ϕn(ξ) if ξ < 0 and ϕ0(ξ) > ϕn(ξ) if ξ ∈ (0, $n).

Moreover, if the sequence {gn}n≥1 is strictly decreasing, then {ϕn}n≥1 is
decreasing in (−∞, 0) and increasing in every interval [0, a] with a < $n for
all n.

Proof. Reasoning as in the proof of Lemma 6.1(i) we obtain

zn < z0, ϕ ∈ (0, ρ), (6.4)

for all n ≥ 1. We deduce that ϕ′0(0) = D(ρ2 )z0(ρ2 ) > D(ρ2 )zn(ρ2 ) = ϕ′n(0),
hence ϕ0 > ϕn in a right neighborhood of 0. Fix n and define

ξ := sup
{
ξ ∈ (0, $n) : ϕ0(ξ) > ϕn(ξ)

}
.

If ξ < $n, then ϕ0 > ϕn in [0, ξ) and ϕ0(ξ) = ϕn(ξ) := ϕ. We denote by
ξ0 and ξn the inverse functions of ϕ0 and ϕn respectively; they exist because
the profiles are strictly monotone owing to the sign condition on z. Then, by
(6.4),

D(ϕ)ϕ ′n(ξ) = D(ϕ)ϕ ′n
(
ξn(ϕ)

)
= zn(ϕ)

< z0(ϕ) = D(ϕ)ϕ ′0
(
ξ0(ϕ)

)
= D(ϕ)ϕ ′0(ξ).

By the sign condition on D we deduce that ϕ ′0(ξ) > ϕ ′n(ξ), which contradicts
ϕ0 > ϕn in [0, ξ). A similar reasoning applies for ξ < 0. The last statement
follows analogously. �

7. The case when g changes sign

In this section, we prove Theorem 2.7.

Proof of Theorem 2.7. We begin by considering the interval [0, ρ0]. By [8,
Theorem 2.7], with ρ replaced by ρ0, we deduce that, for any wave speed
c ∈ R, there exist strict classical semi-wavefront solutions both from ρ0 and
to ρ0; moreover, they are unique (up to shifts) in the class of classical or
sharp solutions. Their corresponding profiles are not strictly monotone, by
(2.6) and [8, Theorem 2.9], and satisfy, see Figure 8,

ϕ1,a from ρ0

{
ϕ1,a(ξ) ≡ ρ0, ξ ∈ (−∞, ξ1,a],

ϕ1,a(ξ) ∈ [0, ρ0), ξ ∈ (ξ1,a, $1,a],

ϕ1,b to ρ0

{
ϕ1,b(ξ) ∈ [0, ρ0), ξ ∈ [$1,b, ξ1,b),

ϕ1,b(ξ) ≡ ρ0, ξ ∈ [ξ1,b,∞),

(7.1)

for some ξ1,a and ξ1,b.

Consider now equation (1.2) and define

D1(ρ) = D(ρ− ρ), g1(ρ) = −g(ρ− ρ), h1(ρ) = h(ρ− ρ),
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Figure 8. The profiles ϕ1,a, ϕ1,b, ϕ2,a, ϕ2,b.

with ρ ∈ [0, ρ− ρ0]. Consider the equation(
D1(ψ)ψ′

)′
+
(
c− h1(ψ)

)
ψ′ + g1(ψ) = 0. (7.2)

Let ψ(ξ) := ρ − ϕ(ξ). It is easy to see that ϕ satisfies (1.2) if and only if
ψ := ρ − ϕ(ξ) satisfies (7.2). Notice that ϕ ranges in [ρ0, ρ] as long as ψ
ranges in [0, ρ − ρ0]. Again by [8, Theorem 2.7], equation (7.2) has strict
classical traveling-wave profile from ρ − ρ0 and to ρ − ρ0, for every speed
c ∈ R; they are also unique (up to shifts) in the class of classical or sharp
traveling-wave solutions. Further, by applying condition (2.6), we obtain

g1(ρ) ≥ L (ρ− ρ0 − ρ)
α

in a left neighborhood of ρ− ρ0,

with L and α as in (2.6). Hence, by [8, Theorem 2.9] the corresponding profiles
are such that

ψa from ρ− ρ0

{
ψa(ξ) ≡ ρ− ρ0, ξ ∈ (−∞, ξa],

ψa(ξ) ∈ [0, ρ− ρ0), ξ ∈ (ξa, $a],

ψb to ρ− ρ0

{
ψb(ξ) ∈ [0, ρ− ρ0), ξ ∈ [$b, ξb),

ψb(ξ) ≡ ρ− ρ0, ξ ∈ [ξb,∞),

(7.3)

for some ξa and ξb. Hence we obtain the additional semi-wavefronts profiles
for (1.1) 

ϕ2,a from ρ0

{
ϕ2,a(ξ) ≡ ρ0, ξ ∈ (−∞, ξ2,a],

ϕ2,a(ξ) ∈ (ρ0, ρ], ξ ∈ (ξ2,a, $2,a],

ϕ2,b to ρ0

{
ϕ2,b(ξ) ∈ (ρ0, ρ], ξ ∈ [$2,b, ξ2,b),
ϕ2,b(ξ) ≡ ρ0, ξ ∈ [ξ2,b,∞).

(7.4)

So we conclude the proof by pasting as follows the various semi-wavefronts.

(1) We consider the profiles ϕ1,b and ϕ2,a and we shift them in such a way

that ξ1,b = ξ2,a; this is always possible. Then ϕ1 : [$1,b, $2,a] → [0, ρ]
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defined by

ϕ1(ξ) =

{
ϕ1,b(ξ) if $1,b ≤ ξ ≤ ξ1,b = ξ2,a,

ϕ2,a(ξ) if ξ2,a ≤ ξ ≤ $2,a,

is a profile of a traveling-wave solutions which satisfies the required
condition.

(2) We consider the profiles ϕ2,b and ϕ1,a and we shift them in such a way

that ξ2,b = ξ1,a; again this is possible. Then ϕ2 : [$2,b, $1,a] → [0, ρ] is
defined by

ϕ2(ξ) =

{
ϕ2,b(ξ) if $2,b ≤ ξ ≤ ξ2,b = ξ1,a,

ϕ1,a(ξ) if ξ1,a ≤ ξ ≤ $1,a.

(3) The profile ϕ3 of this traveling-wave solution is obtained by pasting ϕ1,a

and ϕ1,b in the case when ξ1,a = ξ1,b. In particular ϕ3 : [$1,b, $1,a] →
[0, ρ0] is defined by

ϕ3(ξ) =

{
ϕ1,b(ξ) if $1,b ≤ ξ ≤ ξ1,b = ξ1,a,

ϕ1,a(ξ) if ξ1,a ≤ ξ ≤ $1,a.
.

(4) The profile ϕ4 of this traveling-wave solution is obtained by pasting ϕ2,a

and ϕ2,b in the case when ξ2,a = ξ2,b. In particular ϕ4 : [$2,b, $2,a] →
[ρ0, ρ] is defined by

ϕ4(ξ) =

{
ϕ2,b(ξ) if $2,b ≤ ξ ≤ ξ2,b = ξ2,a,

ϕ2,a(ξ) if ξ2,a ≤ ξ ≤ $2,a.

The theorem is completely proved. �
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Figure 9. The profile ϕ̃1 in (7.5).

Remark 7.1. The wave profiles ϕ1 and ϕ2 in Theorem 2.7 are strictly mono-
tone because they assume the value ρ0 exactly in one point. We can also
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construct profiles where the value ρ0 is reached in an interval, hence los-
ing the strict monotonicity. For instance, when ξ2,b < ξ1,a, the function
ϕ̃2 : [$2,b, $1,a]→ [0, ρ] defined by

ϕ̃2(ξ) =


ϕ2,b(ξ) if $2,b ≤ ξ ≤ ξ2,b,
ρ0 if ξ2,b ≤ ξ ≤ ξ1,a,
ϕ1,a(ξ) if ξ1,a ≤ ξ ≤ $1,a,

(7.5)

is the profile of a classical strict traveling wave for (1.1) that is not strictly
monotone.

We recall that an analogous “pasting” between profiles has been shown
in [8, §8] to fail. That failure was due to the fact that D(ϕ)ϕ′ was discon-
tinuous at the point ξ of pasting; in turn, this was a consequence of being
ϕ′(ξ±) ∈ R while |ϕ(ξ∓)| = ∞. In the present case, on the contrary, we
always have ϕ′(ξ±) = 0, because the profiles are classical; as a consequence,
D(ϕ)ϕ′ vanishes at ξ.
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