Glassy carbon electrodes have been successfully employed for the determination, by differential pulse voltammetry, of Mn(II) ions dissolved in aqueous solutions. In particular, a simple and fast procedure also suitable for on-line or at-line process control has been developed. Statistical analysis of the results obtained reveals that the procedure can be adopted in the range 0.59–57.30 mM Mn(II). The electrochemical responses are repeatable and reproducible. Repeatability is testified by the lack of variation of peak current values calculated from 20 subsequent scans carried out at the maximum explored concentration (relative standard deviation <1%). Reproducibility of the responses is supported by the data from the responses on three different electrodes. The proposed procedure does not require any pre-concentration of Mn species at the electrode surface or de-aeration of the solution. By adopting the developed procedure for the analysis, the GC electrode demonstrates to be suitable also for application in real matrices, namely solutions from spent battery recycling; in particular the results from the present electrochemical method are not significantly different from those obtained through inductively plasma coupled mass spectrometry. Interference from other metal species, such as Zn(II) and Fe(III), is negligible. This result is particularly meaningful, since the experimental conditions chosen, implying particularly high concentrations of heavy metals, are representative of those adopted in recovery and recycle processes of Mn species from batteries.

Electroanalytical determination of soluble Mn(II) species at high concentration levels / Ruggeri, Stefano; Terzi, Fabio; Zanfrognini, Barbara; Corsi, E.; Dossi, N.; Zanardi, Chiara; Pigani, Laura; Seeber, Renato. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 240:(2017), pp. 108-113. [10.1016/j.electacta.2017.04.066]

Electroanalytical determination of soluble Mn(II) species at high concentration levels

RUGGERI, STEFANO;TERZI, Fabio;ZANFROGNINI, Barbara;ZANARDI, Chiara;PIGANI, Laura;SEEBER, Renato
2017

Abstract

Glassy carbon electrodes have been successfully employed for the determination, by differential pulse voltammetry, of Mn(II) ions dissolved in aqueous solutions. In particular, a simple and fast procedure also suitable for on-line or at-line process control has been developed. Statistical analysis of the results obtained reveals that the procedure can be adopted in the range 0.59–57.30 mM Mn(II). The electrochemical responses are repeatable and reproducible. Repeatability is testified by the lack of variation of peak current values calculated from 20 subsequent scans carried out at the maximum explored concentration (relative standard deviation <1%). Reproducibility of the responses is supported by the data from the responses on three different electrodes. The proposed procedure does not require any pre-concentration of Mn species at the electrode surface or de-aeration of the solution. By adopting the developed procedure for the analysis, the GC electrode demonstrates to be suitable also for application in real matrices, namely solutions from spent battery recycling; in particular the results from the present electrochemical method are not significantly different from those obtained through inductively plasma coupled mass spectrometry. Interference from other metal species, such as Zn(II) and Fe(III), is negligible. This result is particularly meaningful, since the experimental conditions chosen, implying particularly high concentrations of heavy metals, are representative of those adopted in recovery and recycle processes of Mn species from batteries.
2017
240
108
113
Electroanalytical determination of soluble Mn(II) species at high concentration levels / Ruggeri, Stefano; Terzi, Fabio; Zanfrognini, Barbara; Corsi, E.; Dossi, N.; Zanardi, Chiara; Pigani, Laura; Seeber, Renato. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 240:(2017), pp. 108-113. [10.1016/j.electacta.2017.04.066]
Ruggeri, Stefano; Terzi, Fabio; Zanfrognini, Barbara; Corsi, E.; Dossi, N.; Zanardi, Chiara; Pigani, Laura; Seeber, Renato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1135973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact