A new approximation solvability method is developed for the study of semilinear differential equations with nonlocal conditions without the compactness of the semigroup and of the nonlinearity. The method is based on the Yosida approximations of the generator of C0semigroup, the continuation principle, and the weak topology. It is shown how the abstract result can be applied to study the reaction-diffusion models.

An approximation solvability method for nonlocal semilinear differential problems in Banach spaces / Benedetti, Irene; Loi, Nguyen Van; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 37:6(2017), pp. 2977-2998. [10.3934/dcds.2017128]

An approximation solvability method for nonlocal semilinear differential problems in Banach spaces

TADDEI, Valentina
2017

Abstract

A new approximation solvability method is developed for the study of semilinear differential equations with nonlocal conditions without the compactness of the semigroup and of the nonlinearity. The method is based on the Yosida approximations of the generator of C0semigroup, the continuation principle, and the weak topology. It is shown how the abstract result can be applied to study the reaction-diffusion models.
2017
37
6
2977
2998
An approximation solvability method for nonlocal semilinear differential problems in Banach spaces / Benedetti, Irene; Loi, Nguyen Van; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 37:6(2017), pp. 2977-2998. [10.3934/dcds.2017128]
Benedetti, Irene; Loi, Nguyen Van; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Benedetti-Loi-Taddei1.pdf

Open access

Descrizione: articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 461.39 kB
Formato Adobe PDF
461.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1132177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact