A growing interest towards smart manufacturing is focused on sustainable development at both industrial and policy level. In particular, an effective sustainable development incorporates three fundamental pillars: environment, cost and society. While environment and cost have been already faced by numerous studies so far, society is still the less considered in manufacturing. Social sustainability comprises specific relapses on humans that are quantifiable through social assessment methods. This research work proposes a new Social Life Cycle Assessment (S-LCA) methodology, based on the United Nations Environment Programme and the Society for Environmental Toxicology and Chemistry (UNEP/SETAC) framework, to support enterprise modelling and knowledge management to assess company sustainability by solving current issues and uncertainties regarding the evaluation of social impacts in the context of smart manufacturing. The analysis is settled into a LIFE +2012 European Project, named LIFE GREEN SINKS. The project concerns the introduction of innovative materials for a new generation of kitchen sinks. The S-LCA methodology proposed embeds a detailed inventory method tailored on real data, collected directly from the field of application thanks to customised surveys that allow modelling the enterprise and integrating data available from the manufacturing process. This method is designed as a supporting tool for enterprise modelling and strategic company decision-making. Specifically, it intends to help companies in understanding and, consequently reducing, social impacts of all processes related to a certain product from a life cycle perspective, to achieve an effective “smart” manufacturing for a sustainable development.
A social life cycle assessment methodology for smart manufacturing: the case of study of a kitchen sink / Peruzzini, Margherita; Gregori, Fabio; Luzi, Andrea; Mengarelli, Marco; Germani, Michele. - In: JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION. - ISSN 2452-414X. - 7:(2017), pp. 24-32. [10.1016/j.jii.2017.04.001]
A social life cycle assessment methodology for smart manufacturing: the case of study of a kitchen sink
PERUZZINI, MARGHERITA;
2017
Abstract
A growing interest towards smart manufacturing is focused on sustainable development at both industrial and policy level. In particular, an effective sustainable development incorporates three fundamental pillars: environment, cost and society. While environment and cost have been already faced by numerous studies so far, society is still the less considered in manufacturing. Social sustainability comprises specific relapses on humans that are quantifiable through social assessment methods. This research work proposes a new Social Life Cycle Assessment (S-LCA) methodology, based on the United Nations Environment Programme and the Society for Environmental Toxicology and Chemistry (UNEP/SETAC) framework, to support enterprise modelling and knowledge management to assess company sustainability by solving current issues and uncertainties regarding the evaluation of social impacts in the context of smart manufacturing. The analysis is settled into a LIFE +2012 European Project, named LIFE GREEN SINKS. The project concerns the introduction of innovative materials for a new generation of kitchen sinks. The S-LCA methodology proposed embeds a detailed inventory method tailored on real data, collected directly from the field of application thanks to customised surveys that allow modelling the enterprise and integrating data available from the manufacturing process. This method is designed as a supporting tool for enterprise modelling and strategic company decision-making. Specifically, it intends to help companies in understanding and, consequently reducing, social impacts of all processes related to a certain product from a life cycle perspective, to achieve an effective “smart” manufacturing for a sustainable development.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris