Cool roofs are effective solutions to counter the overheating of building roofs, inhabited spaces below and urban areas in which buildings are located thanks to their capability of reflecting solar radiation. Nonetheless, the relatively low surface temperatures that they induce can cause condensation of humidity and leave the surface wetted for large part of the day, thus promoting the growth of bacteria, algae and other biological fouling; this can cause a quick decay of the solar reflective performance. Biological growth is countered by surface treatments, which however may be toxic and forbidden in many countries and may also vanish quickly. It can also be countered by lowering the thermal emittance and thus decreasing heat transfer by infrared radiation to the sky and the consequent night undercooling, but this can decrease the performance of cool roofs. An alternative approach, which is analyzed in this work, is to embed in the first layer below the cool roof surface a phase change material (PCM) that absorbs heat during the daytime and then releases it in the nighttime. This can increase the minimum surface temperatures, thus reducing the occurrence humidity condensation and, with this, the biological growth. In this work, preliminary results on the coupling of a cool roof surface with a PCM sublayer are presented, being obtained by theoretical investigation on commercial materials and taking into account the time evolution pattern of the environmental conditions.

Coupling of solar reflective cool roofing solutions with sub-surface phase change materials (PCM) to avoid condensation and biological growth / Muscio, Alberto. - In: ENVIRONMENTAL SCIENCE AND SUSTAINABLE DEVELOPMENT. - ISSN 2357-0857. - 1:1(2016), pp. 13-22. [10.21625/essd.v1i1.32]

Coupling of solar reflective cool roofing solutions with sub-surface phase change materials (PCM) to avoid condensation and biological growth

MUSCIO, Alberto
2016

Abstract

Cool roofs are effective solutions to counter the overheating of building roofs, inhabited spaces below and urban areas in which buildings are located thanks to their capability of reflecting solar radiation. Nonetheless, the relatively low surface temperatures that they induce can cause condensation of humidity and leave the surface wetted for large part of the day, thus promoting the growth of bacteria, algae and other biological fouling; this can cause a quick decay of the solar reflective performance. Biological growth is countered by surface treatments, which however may be toxic and forbidden in many countries and may also vanish quickly. It can also be countered by lowering the thermal emittance and thus decreasing heat transfer by infrared radiation to the sky and the consequent night undercooling, but this can decrease the performance of cool roofs. An alternative approach, which is analyzed in this work, is to embed in the first layer below the cool roof surface a phase change material (PCM) that absorbs heat during the daytime and then releases it in the nighttime. This can increase the minimum surface temperatures, thus reducing the occurrence humidity condensation and, with this, the biological growth. In this work, preliminary results on the coupling of a cool roof surface with a PCM sublayer are presented, being obtained by theoretical investigation on commercial materials and taking into account the time evolution pattern of the environmental conditions.
2016
1
1
13
22
Coupling of solar reflective cool roofing solutions with sub-surface phase change materials (PCM) to avoid condensation and biological growth / Muscio, Alberto. - In: ENVIRONMENTAL SCIENCE AND SUSTAINABLE DEVELOPMENT. - ISSN 2357-0857. - 1:1(2016), pp. 13-22. [10.21625/essd.v1i1.32]
Muscio, Alberto
File in questo prodotto:
File Dimensione Formato  
05+-+Coupling+of+Solar+Reflective.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 833.98 kB
Formato Adobe PDF
833.98 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1130282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact