The classical Hartman’s Theorem in for the solvability of the vector Dirichlet problem will be generalized and extended in several directions. We will consider its multivalued versions for Marchaud and upper-Carath´eodory right-hand sides with only certain amount of compactness in Banach spaces. Advanced topological methods are combined with a bound sets technique. Besides the existence, the localization of solutions can be obtained in this way.

Hartman-type conditions for multivalued Dirichlet problem in abstract spaces / Andres, Jan; Malaguti, Luisa; Pavlačková, Martina. - STAMPA. - Issue special(2015), pp. 38-55. (Intervento presentato al convegno 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications tenutosi a Madrid (Spagna) nel 7-11 luglio, 2014) [10.3934/proc.2015.0038].

Hartman-type conditions for multivalued Dirichlet problem in abstract spaces

MALAGUTI, Luisa;
2015

Abstract

The classical Hartman’s Theorem in for the solvability of the vector Dirichlet problem will be generalized and extended in several directions. We will consider its multivalued versions for Marchaud and upper-Carath´eodory right-hand sides with only certain amount of compactness in Banach spaces. Advanced topological methods are combined with a bound sets technique. Besides the existence, the localization of solutions can be obtained in this way.
2015
10th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Madrid (Spagna)
7-11 luglio, 2014
38
55
Andres, Jan; Malaguti, Luisa; Pavlačková, Martina
Hartman-type conditions for multivalued Dirichlet problem in abstract spaces / Andres, Jan; Malaguti, Luisa; Pavlačková, Martina. - STAMPA. - Issue special(2015), pp. 38-55. (Intervento presentato al convegno 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications tenutosi a Madrid (Spagna) nel 7-11 luglio, 2014) [10.3934/proc.2015.0038].
File in questo prodotto:
File Dimensione Formato  
Andres Malaguti Pavlackova Proc 2015.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 461.91 kB
Formato Adobe PDF
461.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1123491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact