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Abstract. The classical Hartman’s Theorem in [18] for the solvability of the vector

Dirichlet problem will be generalized and extended in several directions. We will consider
its multivalued versions for Marchaud and upper-Carathéodory right-hand sides with

only certain amount of compactness in Banach spaces. Advanced topological methods

are combined with a bound sets technique. Besides the existence, the localization of
solutions can be obtained in this way.

1. Introduction. One of the most classical results in the theory of boundary value prob-
lems (b.v.p.) is Hartman’s Theorem.

Theorem 1.1. ([18, Theorem 1], cf. also [19]) Let us consider the vector Dirichlet problem

ẍ(t) = f(t, x(t), ẋ(t)), t ∈ [0, T ],

x(T ) = x(0) = 0,

}
(1)

where f : [0, T ]× Rn × Rn → Rn is a continuous function. Assume that there exists R > 0
such that

〈f(t, x, y), x〉+ ||y||2 ≥ 0, (2)

for all t ∈ [0, T ] and (x, y) ∈ Rn × Rn with ||x|| = R and 〈x, y〉 = 0.
Moreover, let

||f(t, x, y)|| ≤ 2α(〈f(t, x, y), x〉+ ||y||2) +K, for all t ∈ [0, T ], with ||x|| ≤ R (3)

and
||f(t, x, y)|| ≤ φ(||y||), for all t ∈ [0, T ] with ||x|| ≤ R (4)

where α, K are nonnegative constants and φ(s) is a Nagumo function, i.e. φ : [0,∞) →
(0,∞) is a continuous function such that∫ ∞ s

φ(s)
ds =∞. (5)

Then the b.v.p. (1) has a solution.
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Although it was already published in 1960, as far as we know, it has not yet been im-
proved, but only extended in many ways (see e.g. [1], [3], [5], [7], [9], [11]–[14], [17], [22],
[24]–[28], [30]–[33]). In order to be more specific, better (more general) conditions were
obtained e.g. in [23, 27], but they were not imposed strictly locally, but globally. Moreover,
it is not clear whether or not, for instance, Rn can be replaced by a Hilbert space, when f is
additionally completely continuous, or a continuous right-hand side (r.h.s.) can be replaced
by a Carathéodory r.h.s., provided the same conditions (2)–(5) remain valid.

On the other hand, condition (2) can be assumed on the boundary of a convex subset of
Rn or even on the boundary of its homeomorphic image or retract (cf. also [1]), which we
regard rather as a generalization than an improvement of Theorem 1.1.

In the present paper, we will show that such extensions and generalizations are also
possible for multivalued problems in abstract spaces. We will consider separately Dirichlet
problems with not necessarily completely continuous Marchaud (i.e. globally upper semi-
continuous) and upper-Carathéodory r.h.s. in Banach and, in particular, Hilbert spaces.

Remark 1.1. In fact, in [18] as well as in [19], the following problem with nonhomogeneous
boundary conditions was considered

ẍ(t) = f(t, x(t), ẋ(t)), t ∈ [0, T ],

x(0) = x0, x(T ) = xT .

}
(6)

On the other hand, problem (6) can be easily transformed via homogenization (i.e. by
making the change of variables y(t) = x(t) − u(t), where u(t) = xT−x0

T t + x0; cf. e.g. [7,
pp. 2–4]) into the form (1) in Theorem 1.1 which is more convenient for comparison with
analogous results.

Remark 1.2. As pointed out in [18, 19], condition (3) can be omitted in the scalar case,
i.e. for n = 1, or (for an arbitrary n ∈ N) provided condition (4) is replaced by

||f(t, x, y)|| ≤ γ||y||2 + C, for all t ∈ [0, T ], x ∈ Rn with ||x|| ≤ R and y ∈ Rn, (7)

where γ, C are nonnegative constants such that γR < 1.

Remark 1.3. Using the Nagumo-type result (cf. [32]), conditions (2)–(5) were reformulated
in [15, Theorem V.24], [16] as follows:

• The non-strict inequality in (2) was replaced by the strict one, i.e.

〈f(t, x, y), x〉+ ||y||2 > 0, (8)

for all t ∈ [0, T ] and (x, y) ∈ Rn × Rn with ||x|| = R and 〈x, y〉 = 0.
• Condition (3) was omitted.
• The function φ : [0,∞) → (0,∞) appearing in the Nagumo-type conditions (4), (5)

was this time a continuous, nondecreasing function such that (4) holds, jointly with

lim
s→∞

s2

φ(s)
=∞. (9)

Remark 1.4. In [34], the Dirichlet problem (1) was studied for a completely continuous
mapping f : [0, T ]× E × E → E, where E is a Banach space. If E is Rn, or even a Hilbert
space H, then the analogy of Theorem 1.1 holds, when

• The inequality in (2) is replaced by

〈f(t, x, y), x〉 ≥ 0, (10)

for all t ∈ [0, T ] and (x, y) ∈ H ×H with ||x|| = R and 〈x, y〉 = 0.
• Condition (3) is omitted.
• The function φ : [0,∞)→ (0,∞) appearing in the Nagumo-type condition (4) has the

same properties as in Remark 1.3.
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We would like to improve especially the statements in Remarks 1.3 and 1.4 and generalize
them into the multivalued setting in abstract spaces.

The paper is organized as follows. After this introduction, we recall in the next section
some elements of functional and multivalued analyses, jointly with the definition of a measure
of non-compactness and condensing maps. Since our main theorems rely essentially on our
earlier results in [3]–[6],[8], we formulate them in the form of propositions. The Nagumo-
type auxiliary results are given separately in Section 3. The main results are formulated
in the form of three theorems in Section 4. Section 5 contains an application to a control
problem. Finally, in Section 6, the special finite-dimensional single-valued case of obtained
results is compared in discussion with their classical analogous versions of the other authors.

2. Preliminaries. Let E be a Banach space having the Radon-Nikodym property (see e.g.
[29, pp. 694–695]) and [0, T ] ⊂ R be a closed interval. By the symbol L1([0, T ], E), we
shall mean the set of all Bochner integrable functions x : [0, T ]→ E. For the definition and
properties, see e.g. [29, pp. 693–701].

The symbol AC1([0, T ], E) will denote the set of functions x : [0, T ]→ E whose first de-
rivative ẋ(·) is absolutely continuous. Then ẍ ∈ L1([0, T ], E) and the fundamental theorem
of calculus (the Newton–Leibniz formula) holds (see e.g. [2, pp. 243–244], [29, pp. 695–696]).

Thus, the differentiability (derivatives) will be entirely understood in a strong sense
of Fréchet. Similarly, solutions of differential inclusions will be considered in a (strong)
Carathéodory sense, i.e. belonging to the AC1-class. Of course, in the single-valued case,
solutions of ordinary differential equations with continuous r.h.s. will automatically become
C2-solutions, like in Theorem 1.1.

We will denote by E′ the Banach space dual to E and by 〈·, ·〉 the pairing (the duality
relation) between E and E′, i.e., for all Φ ∈ E′ and x ∈ E, we put Φ(x) := 〈Φ, x〉.

Given C ⊂ E and ε > 0, the symbol B(C, ε) will denote, as usually, the set C + εB,
where B is the open unit ball in E, i.e. B = {x ∈ E | ||x|| < 1}.

We shall also need the following definitions and notions from the multivalued analysis.
Let X,Y be two metric spaces. We say that F is a multivalued mapping from X to Y
(written F : X ( Y ) if, for every x ∈ X, a nonempty subset F (x) of Y is given.

A multivalued mapping F : X ( Y is called compact if the set F (X) =
⋃
x∈X F (x) is

contained in a compact subset of Y and it is called quasi-compact if it maps compact sets
onto relatively compact sets.

A multivalued mapping F : X ( Y is called upper semicontinuous (shortly, u.s.c.) if, for
each open subset U ⊂ Y, the set {x ∈ X | F (x) ⊂ U} is open in X.

We say that a multivalued mapping F : [0, T ] ( Y with closed values is a step multivalued
mapping if there exists a finite family of disjoint measurable subsets Ik, k = 1, . . . , n such
that [0, T ] = ∪Ik and F is constant, on every Ik. A multivalued mapping F : [0, T ] ( Y
with closed values is called strongly measurable if there exists a sequence of step multivalued
mappings {Fn} such that dH(Fn(t), F (t)) → 0 as n → ∞, for a.a. t ∈ [0, T ], where dH
stands for the Hausdorff distance.

A multivalued mapping F : [0, T ] ×X ( Y is called an upper-Carathéodory mapping if
the map F (·, x) : [0, T ] ( Y is strongly measurable, for all x ∈ X, the map F (t, ·) : X ( Y
is u.s.c., for almost all t ∈ [0, T ], and the set F (t, x) is compact and convex, for all (t, x) ∈
[0, T ]×X.

For more details concerning multivalued analysis, see e.g. [2, 10, 20, 21].
In the sequel, the measure of non-compactness will also be employed.
Let N be a partially ordered set, E be a Banach space and let P (E) denote the family of

all nonempty subsets of E. A function β : P (E)→ N is called a measure of non-compactness
(m.n.c.) in E if β(co Ω) = β(Ω), for all Ω ∈ P (E), where co Ω denotes the closed convex
hull of Ω.
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The typical example of an m.n.c. is the Hausdorff measure of noncompactness γ defined,
for all Ω ⊂ E by

γ(Ω) := inf{ε > 0 | ∃x1, . . . , xn ∈ E : Ω ⊂ ∪ni=1B(xi, ε)}.
Let E be a Banach space and X ⊂ E. A multivalued mapping F : X ( E with compact

values is called condensing with respect to an m.n.c. β (shortly, β-condensing) if, for every
Ω ⊂ X such that β(F (Ω)) ≥ β(Ω), it holds that Ω is relatively compact.

For the properties and more details about an m.n.c. and condensing maps, see e.g. [2, 10,
20, 21].

We will also need the following slight modification of the result presented in [8].

Proposition 2.1. [8, Theorem 2.2] Let E be a Banach space and K ⊂ E a nonempty, open,
convex, bounded set such that 0 ∈ K. Assume that V : E → R is a Fréchet differentiable
function with V̇ Lipschitzian in ∂K + εB, for some ε > 0, and that it satisfies

(H1) V | ∂K = 0,
(H2) V (x) ≤ 0, for all x ∈ K,
(H3) ||V̇ (x)|| ≥ δ, for all x ∈ ∂K, where δ > 0.

Then there exist k ∈ (0, ε] and a bounded Lipschitzian function ψ : ∂K + kB → E such that

〈V̇x, ψ(x)〉 = 1, for every x ∈ ∂K + kB.

Remark 2.1. In a Hilbert space H with the scalar product 〈·, ·〉, every derivative V̇x can

be identified with an element of H. Consequently, if V̇ is Lipschitizian and if it satisfies
condition (H3), it is possible to find k ∈ (0, ε] such that

x 7−→ ψ(x) =
V̇x

‖V̇x‖
, x ∈ ∂K + kB,

is well defined. Moreover, it holds that 〈V̇x, ψ(x)〉 = 1, for all x in its domain.

We will also apply the following continuation principle developed in [4].

Proposition 2.2. Let us consider the general multivalued b.v.p.

ẍ(t) ∈ ϕ(t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x ∈ S,

}
(11)

where ϕ : [0, T ] × E × E ( E is an upper-Carathéodory mapping and S ⊂ AC1([0, T ], E).
Let H : [0, T ]× E × E × E × E × [0, 1] ( E be an upper-Carathéodory mapping such that

H(t, c, d, c, d, 1) ⊂ ϕ(t, c, d), for all (t, c, d) ∈ [0, T ]× E × E. (12)

Moreover, assume that the following conditions hold:

(i) There exist a closed, bounded set S1 ⊂ S and a closed, convex set Q ⊂ C1([0, T ], E)
with a non-empty interior Int Q such that each associated problem

ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ), for a.a. t ∈ [0, T ],

x ∈ S1,

}
P (q, λ)

where q ∈ Q and λ ∈ [0, 1], has a non-empty, convex set of solutions (denoted by
T(q, λ)).

(ii) For every nonempty, bounded set Ω ⊂ E ×E, there exists νΩ ∈ L1([0, T ], [0,∞)) such
that

||H(t, x, y, z, w, λ)|| ≤ νΩ(t),

for a.a. t ∈ [0, T ] and all (x, y, z, w) ∈ Ω× Ω and λ ∈ [0, 1].
(iii) The solution mapping T is quasi-compact and µ-condensing with respect to a monotone

and nonsingular m.n.c. µ defined on C1([0, T ], E).
(iv) For each q ∈ Q, the set of solutions of the problem P (q, 0) is a subset of Int Q, i.e.

T(q, 0) ⊂ Int Q, for all q ∈ Q.



42 J. ANDRES, L. MALAGUTI AND M. PAVLAČKOVÁ

(v) For each λ ∈ (0, 1), the solution mapping T(·, λ) has no fixed points on the boundary
∂Q of Q.

Then the b.v.p. (11) has a solution in Q.

In [3] and [5], we proved in detail the following three results, stated here in the form of
propositions, which deal with the existence and the localization of a solution of a multivalued
Dirichlet problem. The first result concerns the case of globally upper semicontinuous r.h.s.
and strictly localized (so called bounding) function V (cf. conditions (15) and (16) below).
The second result concerns the case of upper-Carathéodory r.h.s. and non-strictly localized
bounding function V (cf. conditions (20) and (21) below). The third result, obtained in [5]
via the Scorza-Dragoni approximation technique, deals with the case of upper-Carathéodory
r.h.s. and strictly localized bounding function V (cf. condition (23) below).

Proposition 2.3. (cf. [3, Theorem 5.2]) Consider the Dirichlet b.v.p.

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0,

}
(13)

where E is a Banach space having the Radon-Nikodym property and F : [0, T ]×E×E ( E
is an upper semicontinuous mapping with compact, convex values. Assume that K ⊂ E is an
open, bounded, convex set containing 0. Moreover, let the following conditions be satisfied:

(1i) γ (F (t,Ω1 × Ω2)) ≤ g(t) (γ(Ω1) + γ(Ω2)), for a.a. t ∈ [0, T ] and each Ω1 ⊂ K, and
each bounded Ω2 ⊂ E, where g ∈ L1([0, T ], [0,∞)) and γ is the Hausdorff m.n.c. in
E.

(1ii) For every non-empty, bounded set Ω ⊂ E, there exists νΩ ∈ L1([0, T ], [0,∞)) such that

‖F (t, x, y)‖ ≤ νΩ(t), (14)

for a.a. t ∈ [0, T ] and all (x, y) ∈ Ω× E.
(1iii)

(T + 4)‖g‖L1([0,T ],[0,∞)) < 2.

Furthermore, let there exist a function V ∈ C1(E,R) with a locally Lipschitzian Fréchet

derivative V̇ satisfying (H1) and (H2) of Proposition 2.1. Moreover, let, for all x ∈ ∂K, t ∈
(0, T ), λ ∈ (0, 1) and y ∈ E satisfying

〈V̇x, y〉 = 0, (15)

the following condition holds

lim inf
h→0

〈V̇x+hy, y〉
h

+ 〈V̇x, w〉 > 0, (16)

for all w ∈ λF (t, x, y). Then the Dirichlet b.v.p. (13) admits a solution whose values are
located in K. If, moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is
nontrivial.

Remark 2.2. The typical case occurs when E = H is a Hilbert space, 〈·, ·〉 denotes the
scalar product and

V (x) :=
1

2

(
||x||2 −R2

)
=

1

2

(
〈x, x〉 −R2

)
, (17)

for some R > 0. In this case, V ∈ C2(H,R) and it is not difficult to see that condition (16)
becomes

〈y, y〉+ λ〈x, w〉 > 0 (18)

with t, x, y as in Proposition 2.3 (where K := {x ∈ H| ||x|| < R }) and w ∈ F (t, x, y).
Moreover, since the condition (18) is satisfied, when

〈y, y〉+ 〈x, w〉 > 0 (19)
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holds, for t, x, y and w as above, we can assume, instead of (18), condition (19) which is
more convenient for applications and especially more suitable for comparison with analogous
results.

We will present the conditions under which the strict inequality in the condition (16) can
be replaced by a non-strict one. In the last section, we will discuss the case when E = Rn
and f = F : [0, T ]× Rn × Rn → Rn is continuous. Thus, we will obtain the generalizations
of results described in Theorem 1.1, Remark 1.3 and Remark 1.4.

Proposition 2.4. (cf. [3, Theorem 5.1]) Consider the Dirichlet b.v.p. (13), where F : [0, T ]×
E × E ( E is an upper-Carathéodory multivalued mapping. Assume that K ⊂ E is an
open,bounded, convex set containing 0. Furthermore, let the conditions (1i), (1ii), (1iii)
from Proposition 2.3 be satisfied.

Finally, let there exist a function V ∈ C1(E,R) with a locally Lipschitzian Fréchet de-

rivative V̇ satisfying conditions (H1) and (H2) of Proposition 2.1 and at least one of the
conditions

lim sup
h→0−

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w〉 > 0, (20)

lim sup
h→0+

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w〉 > 0, (21)

for a suitable ε > 0, all x ∈ K ∩B(∂K, ε), t ∈ (0, T ), y ∈ E, λ ∈ (0, 1) and w ∈ λF (t, x, y).
Then the Dirichlet b.v.p. (13) admits a solution whose values are located in K. If, moreover,
0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

Remark 2.3. Let us note that also in this case the analogy of previous remark holds, i.e.
if E = H is a Hilbert space, 〈·, ·〉 denotes the scalar product and V is defined by (17), then
conditions (20) and (21) take the form (18). They can be satisfied e.g. by the condition
(19) which is more convenient for comparisons with other results.

We will also present the conditions under which the strict inequality in the condition (18)
can be replaced by a non-strict one.

Proposition 2.5. (cf. [5, Theorem 3.1]) In a separable Banach space E, let us consider
the Dirichlet b.v.p. (13) and suppose that F : [0, T ]×E ×E ( E is an upper-Carathéodory
mapping which is either globally measurable or quasi-compact. Let K ⊂ E be an open,
bounded, convex set containing 0 and let the conditions (1i), (1ii) and the following condition
(2iii) be satisfied:

(2iii)

(T + 4)||g||L1([0,T ],[0,∞)) < 4.

Furthermore, let there exist ε > 0 and a function V ∈ C2(E,R) with Fréchet derivative V̇

Lipschitzian in B(∂K, ε) satisfying (H1), (H2) and (H3) of Proposition 2.1. Let there still
exist h > 0 such that 〈

V̈x(v), v
〉
≥ 0, for all x ∈ B(∂K, h), v ∈ E, (22)

where V̈x(v) denotes the second Fréchet derivative of V at x in the direction (v, v) ∈ E×E.
Finally, let

〈V̇x, w〉 > 0, (23)

for a.a. t ∈ (0, T ) and all x ∈ ∂K, v ∈ E, and w ∈ F (t, x, v).
Then the Dirichlet b.v.p. (13) admits a solution whose values are located in K. If, more-

over, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.
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3. Nagumo-type auxiliary results. Following the ideas in [34], for x ∈ C2([0, 1], E) and
F single-valued and completely continuous, we can state the following lemma which this
time concerns x ∈ AC1([0, T ], E) and a multivalued upper-Carathéodory r.h.s. F . For the
sake of completeness, we shall prove it in detail.

Lemma 3.1. Let φ : [0,∞)→ (0,∞) be a continuous, nondecreasing function such that

lim
s→∞

s2

φ(s)
=∞. (24)

Moreover, let E be a Banach space satisfying the Radon-Nikodym property and F : [0, T ]×E×
E ( E be an upper-Carathéodory mapping satisfying (29). If R > 0 and x ∈ AC1([0, T ], E)
is a solution of the inclusion

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ], (25)

satisfying ||x(t)|| ≤ R, then there exists M > 0 (depending only on R and φ) such that
‖ẋ(t)‖ ≤M , for all t ∈ [0, T ].

Proof. Let x ∈ AC1([0, T ], E) be a solution of the inclusion (25) satisfying

||x|| :=
{

max
t∈[0,T ]

||x(t)||
}
≤ R.

Put

q := max
t∈[0,T ]

||ẋ(t)||

and let t0 ∈ [0, T ] be such that ||ẋ(t0)|| = q.
If a ∈ [− 1

2 ,
1
2 ] is arbitrary such that t0 + a ∈ [0, T ], it holds that

x(t0 + a)− x(t0) =

∫ 1

0

ẋ(t0 + sa)a ds = −
∫ 1

0

ẋ(t0 + sa)a(1− s)
′
ds.

Using the per-partes formula and the integration in the sense of Lebesque, we then get that

x(t0 + a)− x(t0) = − [ẋ(t0 + sa)a(1− s)]10 +

∫ 1

0

ẍ(t0 + sa)a2(1− s) ds

= aẋ(t0) + a2

∫ 1

0

ẍ(t0 + sa)(1− s) ds.

Therefore,

q := ||ẋ(t0)|| ≤ 2R

|a|
+ |a|

∫ 1

0

||ẍ(t0 + sa)||(1− s) ds ≤ 2R

|a|
+
|a|φ(q)

2
,

because the function φ is nondecreasing and satisfies condition (29).
Moreover, since

lim
s→∞

s2

φ(s)
=∞,

it is possible to find Q(R) > 0 such that if s > Q(R), then s2

φ(s) > 4R.

We will now show that q ≤M , where

M := max {Q(R), 8R} . (26)

For this purpose, let us assume that q > Q(R). Then q2

4R > φ(q), and so

q <
2R

|a|
+
|a|q2

8R
. (27)
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If 4R
q ≥

1
2 , then q ≤ 8R, and if 4R

q < 1
2 , then we obtain the contradiction to (27), when

setting |a| = 4R
q , because in such a case

q <
2R
4R
q

+

4R
q q

2

8R
=
q

2
+
q

2
= q.

Therefore, if q > Q(R), then q ≤ 8R, and so q = ||ẋ|| ≤M , where M is defined by (26).

It was shown in [19] that if E = Rn and F = f : [0, T ] × E × E → E is a continuous
function, then condition (24) can be improved as follows.

Lemma 3.2. (cf. [19, Lemma XII.5.2]) Let f : [0, T ]×Rn×Rn → Rn be a continuous func-
tion satisfying condition (4), where φ : [0,∞) → (0,∞) is a continuous function satisfying
condition (5). Moreover, let there exist α, β ≥ 0 such that, for a.a. t ∈ [0, T ] and all x ∈ Rn
with ||x|| ≤ R and y ∈ Rn, condition (3) holds.

If R > 0 and x ∈ C2([0, T ],Rn) is a solution of the equation

ẍ(t) = f(t, x(t), ẋ(t)), for t ∈ [0, T ], (28)

satisfying ||x(t)|| ≤ R, then there exists M > 0 (depending only on R, α, β and φ) such that
‖ẋ(t)‖ ≤M , for all t ∈ [0, T ].

Let us note that the standard usage of the Nagumo technique, i.e. Lemma 3.1 and Lemma
3.2 here, consists in its application to the inclusion ẍ ∈ F (t, x, r(ẋ)), where r : E → BM
is a retraction to the ball BM := {y ∈ E : ‖y‖ ≤ M} such that r|BM = id|BM . Since

‖x‖ ≤ R implies ‖ẋ‖ ≤M , the obtained results can be then adopted to the original inclusion
ẍ ∈ F (t, x, ẋ).

4. Main results. In this section, we will show conditions under which the strict inequalities
(16), (20)–(21), (23) in Propositions 2.3–2.5 can be replaced by non-strict ones and we will
also formulate the versions of the obtained results, when E is a Hilbert space. In the
following, we always assume that F satisfies the Nagumo-type condition, i.e.

||F (t, x, y)|| ≤ φ(||y||), for a.a. t ∈ [0, T ], allx ∈ E with ||x|| ≤ R and y ∈ E, (29)

with φ as in (24).

Theorem 4.1. Let us consider the Dirichlet b.v.p. (13), where F : [0, T ] × E × E ( E is
an upper semicontinuous mapping with compact, convex values satisfying conditions (1i),
(1iii) from Proposition 2.3 and condition (2ii), where:

(2ii) For every non-empty, bounded set Ω ⊂ E×E, there exists νΩ ∈ L1([0, T ], [0,∞)) such
that

‖F (t, x, y)‖ ≤ νΩ(t), (30)

for a.a. t ∈ [0, T ] and all (x, y) ∈ Ω.

Let K ⊂ E be an open, bounded, convex set containing 0 and let there exist a function
V ∈ C1(E,R) with a locally Lipschitzian Fréchet derivative V̇ satisfying (H1), (H2) and
(H3) of Proposition 2.1. Furthermore, let, for all x ∈ ∂K, t ∈ (0, T ), λ ∈ (0, 1) and y ∈ E
such that

〈V̇x, y〉 = 0, (31)

the following condition

lim inf
h→0

〈V̇x+hy, y〉
h

+ 〈V̇x, w〉 ≥ 0 (32)
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holds, for all w ∈ λF (t, x, y). Finally, let (29) be valid with φ as in (24) and

R = |K| := sup
k∈K
‖k‖.

Then the Dirichlet b.v.p. (13) admits a solution whose values are located in K. If,
moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

Proof. Consider a continuous function τ : E → [0, 1] such that τ(x) = 0, for x 6∈ ∂K + kB,
while τ(x) = 1, for x ∈ ∂K + k

2B, where the constant k was introduced in Proposition 2.1.
Let ψ be as in Proposition 2.1 and let us denote by Lψ its Lipschitz constant. It is easy to

see that the function ψ : E → E given by

ψ(x) =

{
τ(x)ψ(x), for x ∈ ∂K + kB,

0, otherwise,

is well-defined, continuous and bounded.
Let us put m := sup

x∈E
‖ψ(x)‖ and consider the sequence of Dirichlet problems

ẍ(t) ∈ Fn(t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],

x(T ) = x(0) = 0,

}
(Pn)

with Fn : [0, T ]× E × E ( E such that (t, x, y) 7−→ F (t, x, y) +
ψ(x)

n
.

Since ψ is continuous, the mapping Fn is u.s.c., for all n ∈ N. We will show that Fn
satisfies condition (1i) with gn = g +

Lψ
n . In such a case, for a sufficiently large n, we have

that

(T + 4)‖gn‖L1([0,T ],[0,∞)) = (T + 4)‖g‖L1([0,T ],[0,∞)) +
TLψ(T + 4)

n
< 2,

and so (1iii) holds. In order to prove condition (1i), for Fn, let Ω1 ⊂ K and Ω2 ⊂ E be
bounded. Firstly, notice that

γ
({

ψ(Ω1)
n

}
n

)
= 1

nγ
(
{τ(x)ψ(x) : x ∈ Ω1 ∩

(
∂K + kB

)
}
)

≤ 1
nγ
(
∪λ∈[0,1]{λψ(x) : x ∈ Ω1 ∩

(
∂K + kB

)
}
)
.

It is well known that γ
(
∪λ∈[0,1]Ω

)
= γ(Ω), for every bounded Ω ⊂ E (see e.g. [6]). There-

fore, according to the properties of the Hausdorff m.n.c.,

γ

({
ψ(Ω1)

n

}
n

)
≤ 1

n
γ
(
ψ(Ω1 ∩

(
∂K + kB

)
)
)
≤ Lψ

n
γ(Ω1 ∩

(
∂K + kB

)
).

Moreover, according to (1i) and the additivity of the Hausdorff m.n.c., we obtain that

γ (Fn(t,Ω1 × Ω2)) ≤ g(t) (γ(Ω1) + γ(Ω2)) +
Lψ
n γ(Ω1 ∩

(
∂K + kB

)
)

≤
(
g(t) +

Lψ
n

)
(γ(Ω1) + γ(Ω2)) ,

for all n ∈ N. Hence, Fn satisfies (1i), for all n ∈ N, with gn as announced. From now on,
we assume that condition (1iii) is satisfied, for all n ∈ N.

Let φ : E → R be such that x 7−→ φ(x) + m. Observe that φ is nondecreasing, satisfies
(24) and, for all n ∈ N,

‖Fn(t, x, y)‖ ≤ φ(‖y‖), for a.a. t ∈ [0, T ], allx ∈ E with ||x|| ≤ R and y ∈ E. (33)

Consider x ∈ ∂K, t ∈ (0, 1) and y ∈ E satisfying 〈V̇x, y〉 = 0. If wn ∈ λFn(t, x, y), there

exists w ∈ λF (t, x, y) satisfying wn = w + λψ(x)
n , and so

〈V̇x, wn〉 = 〈V̇x, w〉+ 〈V̇x,
λψ(x)

n
〉 = 〈V̇x, w〉+

λ

n
.
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Therefore,

lim inf
h→0

〈V̇x+hy, y〉
h

+ 〈V̇x, wn〉 =
λ

n
+ lim inf

h→0

〈V̇x+hy, y〉
h

+ 〈V̇x, w〉 > 0.

Thanks to condition (29), for a sufficiently large n, the Dirichlet problem (Pn) satisfies all
the assumptions of Proposition 2.3, and subsequently it admits a solution xn(t) such that
xn(t) ∈ K, for all t ∈ [0, T ]. Moreover, according to (33) (cf. Lemma 3.1), there exists
M > 0 such that ‖ẋn(t)‖ ≤M , for a.a. t ∈ [0, T ].

If we denote by G(t, s) the Green function associated to the homogeneous problem (see
e.g. [3]), it is known that

xn(t) =

∫ T

0

G(t, s)ẍn(s) ds and ẋn(t) =

∫ T

0

∂

∂t
G(t, s)ẍn(s) ds, (34)

for all t ∈ [0, T ] and n ∈ N. Moreover, |G(t, s)| ≤ T
4 and | ∂∂tG(t, s)| ≤ 1, for all (t, s) ∈

[0, T ]× [0, T ]. Hence, according to (1ii) and Lemma 3.1, there exists M > 0 such that

‖G(t, s)ẍn(s)‖ ≤ T

4

(
νK×B(0,M)(s) +

m

n

)
,

and ∥∥∥∥ ∂∂tG(t, s)ẍn(s)

∥∥∥∥ ≤ νK×B(0,M)(s) +
m

n
,

for all (t, s) ∈ [0, T ]× [0, T ] and n ∈ N. In addition, condition (1i) and the semi-homogeneity
of the m.n.c. γ imply that

γ({G(t, s)ẍn(s)}n) ≤ T

4
Sgn(s) and γ

({
∂

∂t
G(t, s)ẍn(s)

}
n

)
≤ Sgn(s),

for a.a. t ∈ [0, T ] and s ∈ [0, t], where

S := sup
t∈[0,T ]

γ({xn(t)}n) + γ({ẋn(t)}n).

Notice that, in this case, it is possible to exchange the m.n.c. γ with the integral (see
e.g. [6]). Hence, in view of (34), we obtain, for all t ∈ [0, T ],

γ ({xn(t)}n) = γ

({∫ T

0

G(t, s)ẍn(s) ds

}
n

)
≤ T

2
S‖gn‖L1([0,T ],[0,∞)), (35)

and

γ ({ẋn(t)}n) = γ

({∫ T

0

∂

∂t
G(t, s)ẍn(s) ds

}
n

)
≤ 2S‖gn‖L1([0,T ],[0,∞)). (36)

Combining the last two estimates, we obtain S ≤ T+4
2 S‖gn‖L1([0,T ],[0,∞)) and, according

to (1iii), we get that S = 0. Hence, γ({xn(t)}n) = γ({ẋn(t)}n) = 0, for all t ∈ [0, T ].
Thus, according to (1i) and (29), γ({ẍn(t)}n) = 0, and ‖ẍn(t)‖ ≤ νK×B(0,M)(t), for a.a.

t ∈ [0, T ]. Therefore, a classical convergence result (see e.g. [2, Lemma III.1.30]) can be
used which guarantees the existence of a subsequence, denoted as the sequence, and of a
function x ∈ AC1([0, T ], E) such that xn → x, ẋn → ẋ, in C([0, T ], E), and ẍn ⇀ ẍ in
L1([0, T ], E), when n → ∞. Consequently, x(t) ∈ K, for a.a. t ∈ [0, T ]. Finally, by means
of a classical closure result (see e.g. [21, Lemma 5.1.1.]), we can show that x is a solution
of (13) which completes the proof.

Remark 4.1. Theorem 4.1 is a significant generalization in several directions of [34, Theo-
rem 4.1]. Since in finite-dimensional spaces K in Theorem 4.1 need not be convex, but only
an absolute retract space (i.e. in particular contractible), Theorem 4.1 can be also regarded
as a generalization of [1, Theorem 4.5], where only strict sign conditions were applied.
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As a straightforward consequence of Theorem 4.1, we can obtain the following result,
when E is a Hilbert space with the scalar product 〈·, ·〉, K := B(0, R) and V (x) :=
1
2

(
‖x‖2 −R2

)
. In this case, condition (32) becomes

〈x,w〉+ 〈y, y〉 ≥ 0.

Corollary 4.1. Let E be a Hilbert space and let us consider the Dirichlet b.v.p. (13), where
F : [0, T ] × E × E ( E is an upper semicontinuous mapping with compact, convex values.
Moreover, let conditions (1i), (1iii) from Proposition 2.3, jointly with condition (2ii) from
Theorem 4.1, be satisfied and let there exist R > 0 such that

〈x, w〉+ 〈y, y〉 ≥ 0, (37)

holds, for all t ∈ (0, T ), (x, y) ∈ E × E with ||x|| = R and 〈x, y〉 = 0 and all w ∈ F (t, x, y).
Furthermore, let (29) be valid, with φ as in (24).

Then the Dirichlet b.v.p. (13) admits a solution x(·) such that ||x(t)|| ≤ R, for all t ∈
[0, T ]. If, moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

It will be shown in the following theorem that if F is an upper-Carathéodory multivalued
mapping and the transversality condition is not strictly localized, i.e. not required exclu-
sively for x ∈ ∂K, but assumed for all x ∈ K ∩B(∂K, ε), it is possible to replace the strict
inequalities in (20) and (21) by non-strict ones.

Theorem 4.2. Let us consider the Dirichlet b.v.p. (13), where F : [0, T ] × E × E ( E
is an upper-Carathéodory multivalued mapping. Assume that K ⊂ E is an open, bounded,
convex set containing 0. Moreover, let conditions (1i), (1iii) from Proposition 2.3, jointly
with condition (2ii) from Theorem 4.1, be satisfied. Furthermore, let there exist a function

V ∈ C1(E,R) with a locally Lipschitzian Fréchet derivative V̇ satisfying conditions (H1)
and (H2) of Proposition 2.1 and at least one of the conditions

lim sup
h→0−

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w〉 ≥ 0, (38)

lim sup
h→0+

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w〉 ≥ 0, (39)

for a suitable ε > 0, all x ∈ K ∩B(∂K, ε), t ∈ (0, T ), y ∈ E, λ ∈ (0, 1) and w ∈ λF (t, x, y).
Finally, let (29) be valid with φ as in (24) and

R = |K| := sup
k∈K
‖k‖.

Then the Dirichlet b.v.p. (13) admits a solution whose values are located in K. If, moreover,
0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

Proof. Consider the function ψ introduced in the proof of Theorem 4.1 and put ψ̂ := jψ

with j > 0. Let us note that ψ̂ is continuous and bounded with sup
x∈E
‖ψ̂(x)‖ = jm.

We will now apply the continuation principle of Proposition 2.2 in the case when ϕ(t, x, y) :
= F (t, x, y), S := {x ∈ AC1([0, T ], E) : x(0) = x(T ) = 0} and

H : [0, T ]× E × E × E × E × [0, 1] ( E,

H(t, x, y, z, w, λ) = (1− λ)ψ̂(z) + λF (t, z, w).

At first, let us observe that both ϕ and H are upper-Carathéodory mappings and that
condition (12) is obviously satisfied. In what follows, we will check, step by step, that all
the assumptions of Proposition 2.2 are satisfied.
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ad (i) Let S1 = S and put Q = C1([0, T ],K). It is clear that S1 is closed and, according
to the properties of K, the set Q is closed, convex and has a nonempty interior.
Moreover, given q ∈ Q, λ ∈ [0, 1] and f ∈ L1([0, T ], E) with f(t) ∈ F (t, q(t), q̇(t)), for
a.a. t ∈ [0, T ], consider the Dirichlet b.v.p.{

ẍ(t) = (1− λ)ψ̂(q(t)) + λf(t), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0.

This problem is uniquely solvable (see e.g. the proof of [3, Theorem 5.1]) which implies
that the set T(q, λ) of its solutions is nonempty. Since F is convex-valued, T(q, λ) is
also convex.

ad (ii) Condition (ii) is a direct consequence of (2ii), when applied Lemma 3.1, and the

boundedness of ψ̂. More concretely, if Ω ⊂ E × E is bounded, then there exists
νΩ ∈ L1([0, T ], [0,∞)) (cf. condition (2ii)) such that

‖H(t, x, y, z, w, λ)‖ = ‖(1− λ)ψ̂(z) + λF (t, z, w)‖ ≤ jm+ νΩ(t), for a.a. t ∈ [0, T ].

Since jm+ νΩ ∈ L1([0, T ], [0,∞)), condition (ii) from Proposition 2.2 is satisfied.
ad (iii) Let {qn}n ⊂ Q and let {λn}n ⊂ [0, 1]. Then

xn(t) =

∫ T

0

G(t, s)
[
(1− λn)ψ̂(qn(s)) + λnfn(s)

]
ds

and

ẋn(t) = λn

∫ T

0

∂

∂t
G(t, s)

[
(1− λn)ψ̂(qn(s)) + λnfn(s)

]
ds,

with G(t, s) as in the proof of [3, Theorem 5.1] and fn(t) ∈ F (t, qn(t), q̇n(t)), for a.a.
t ∈ [0, T ]. Notice, in particular, that if qn → q in C1([0, T ], E) and λn → λ, then

(1 − λn)ψ̂(qn(t)) → (1 − λ)ψ̂(q(t)), implying that {(1 − λn)ψ̂(qn(t))}n is relatively
compact, for all t ∈ [0, T ]. Therefore, a very similar reasoning as in the proof of [3,
Theorem 5.1] can be used in order to show that the solution mapping T is quasi-
compact and µ-condensing, where µ is the monotone non-singular m.n.c. defined in [3,
p. 308].

ad (iv) For every q ∈ Q, T(q, 0) is the unique solution of the problem{
ẍ(t) = ψ̂(q(t)), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0.

Since

x(t) =

∫ T

0

G(t, s)ψ̂(q(s)) ds,

we have that

‖x(t)‖ ≤ T

4

∫ T

0

‖ψ̂(q(s))‖ ds ≤ jT 2m

4
.

So, if j is small enough, then the ball jT 2m
4 B ⊂ K, and so condition (iv) is also

satisfied.
ad (v) Assume that condition (38) is satisfied.1 If x is a fixed point of T(·, λ), for some

λ ∈ (0, 1), then x is a solution of{
ẍ(t) ∈ (1− λ)ψ̂(x(t)) + F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0.

(40)

We can then apply the bound set theory (cf. [3, Propositon 4.1]) to the problem (40)
in order to show that x is necessarily in the interior of Q.

1Let us note that a similar reasoning can be developed under condition (39).



50 J. ANDRES, L. MALAGUTI AND M. PAVLAČKOVÁ

In fact, let p = min
{
k
2 , ε
}
, x ∈ K ∩ B(∂K, p2 ), t ∈ (0, T ) and y ∈ E and let w ∈

(1− λ)ψ̂(x) +F (t, x, y). According to the definition of ψ̂, we have that ψ̂(x) = jψ(x),
and, moreover, there exists w0 ∈ λF (t, x, y) such that w = (1− λ)jψ(x) +w0. Hence,

〈V̇x+hy−V̇x,y〉
h + 〈V̇x, w〉 =

〈V̇x+hy−V̇x,y〉
h + 〈V̇x, j(1− λ)ψ(x) + w0〉

=
〈V̇x+hy−V̇x,y〉

h + (1− λ)j〈V̇x, ψ(x)〉+ 〈V̇x, w0〉

=
〈V̇x+hy−V̇x,y〉

h + 〈V̇x, w0〉+ (1− λ)j.

Therefore, according to (38), we obtain that

lim sup
h→0−

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w〉

= (1− λ)j + lim sup
h→0−

〈V̇x+hy − V̇x, y〉
h

+ 〈V̇x, w0〉 > 0.

Now, we can apply [3, Propositon 4.1] in order to prove that x(t) ∈ K, for all
t ∈ [0, T ], and so condition (v) from Proposition 2.2 is verified.

All the assumptions of the continuation principle from Proposition 2.2 are so satisfied,
and the proof is complete.

As a straightforward consequence of Theorem 4.2, we can obtain the following result,
when E is a Hilbert space with the scalar product 〈·, ·〉, K := B(0, R) and V (x) :=
1
2

(
‖x‖2 −R2

)
. In this case, both conditions (38) and (39) become

〈x,w〉+ 〈y, y〉 ≥ 0.

Corollary 4.2. Let E be a Hilbert space and let us consider the Dirichlet b.v.p. (13), where
F : [0, T ]× E × E ( E is an upper-Carathéodory multivalued mapping. Let the conditions
(1i), (1iii) from Proposition 2.3, jointly with condition (2ii) from Theorem 4.1, be satisfied

Furthermore, let there exist R > 0 such that

〈x, w〉+ 〈y, y〉 ≥ 0 (41)

holds, for a suitable ε > 0, a.a. t ∈ (0, T ) and all x ∈ E with R− ε < ||x|| ≤ R, y ∈ E and
w ∈ F (t, x, y). Finally, let (29) be valid with φ as in (24) and

R = |K| := sup
k∈K
‖k‖.

Then the Dirichlet b.v.p. (13) admits a solution x(·) such that ||x(t)|| ≤ R, for all t ∈ [0, T ].
If, moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

By the similar arguments as in the proof of Theorem 4.1, the following result dealing
with an upper-Carathéodory mapping F and a strictly localized bounding function V can
be proven. In this case, it is possible to construct a sequence of approximating problems
which satisfy assumptions of Proposition 2.5. Moreover, since the Nagumo-type condition
(29) is used, it is guaranteed that the desired bounded solutions have bounded derivatives,
which enables us to replace condition (1ii) in Proposition 2.5 by the less restrictive condition
(2ii).

Theorem 4.3. Let E be a separable Banach space and let us consider the Dirichlet b.v.p.
(13), where F : [0, T ] × E × E ( E is an upper-Carathéodory mapping which is either
globally measurable or quasi-compact satisfying conditions (1i) from Proposition 2.3, (2ii)
from Theorem 4.1 and (2iii) from Proposition 2.5.
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Assume that K ⊂ E is an open, bounded, convex set containing 0, let

R = |K| := sup
k∈K
‖k‖

and let (29) be valid, with φ as in (24). Moreover, let there exist ε > 0 and a function

V ∈ C2(E,R) with Fréchet derivative V̇ Lipschitzian in B(∂K, ε) satisfying (H1), (H2)
and (H3) of Proposition 2.1. Moreover, let condition (22) hold, jointly with

〈V̇x, w〉 ≥ 0, (42)

for a.a. t ∈ (0, T ) and all x ∈ ∂K, v ∈ E, and w ∈ F (t, x, v).
Then the Dirichlet b.v.p. (13) admits a solution whose values are located in K. If,

moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

Proof. Let us define the function ψ and the sequence of problems (Pn), where Fn : [0, T ]×
E × E ( E, in the same way as in the proof of Theorem 4.1.

Since ψ is continuous, the mapping Fn is upper-Carathéodory, for all n ∈ N. By the
analogous reasonings as in the proof of Theorem 4.1, we can obtain that Fn satisfies condition

(1i) with gn = g +
Lψ
n , and so

(T + 4)‖gn‖L1([0,T ],[0,∞]) = (T + 4)‖g‖L1([0,T ],[0,∞]) +
TLψ(T + 4)

n
< 4,

for n sufficiently large, and that also condition (33) is valid, with φ defined as in the proof
of Theorem 4.1.

Therefore, we can consider, instead of condition (1ii), the less restrictive condition (2ii),
which is ensured directly by the definition of mapping Fn.

For x ∈ ∂K, y ∈ E and wn ∈ Fn(t, x, y), there exists w ∈ F (t, x, y) satisfying wn =

w + ψ(x)
n , and so

〈V̇x, wn〉 = 〈V̇x, w〉+ 〈V̇x,
ψ(x)

n
〉 = 〈V̇x, w〉+

1

n
> 0,

for a.a. t ∈ (0, T ), which ensures the validity of condition (23).
Hence, thanks to condition (29), for a sufficiently large n the Dirichlet problem (Pn)

satisfies all the assumptions of Proposition 2.5, and subsequently it admits a solution xn(t)
such that xn(t) ∈ K, for all t ∈ [0, T ]. Moreover, according to (33) (cf. Lemma 3.1), there
exists M > 0 such that ‖ẋn(t)‖ ≤M , for a.a. t ∈ [0, T ]. Since E is separable, less restrictive
estimates than (35) and (36) are valid implying S ≤ T+4

4 S‖gn‖L1([0,T ],[0,∞]) with S defined
as in the proof of Theorem 4.1. The convergence of obtained sequence of solutions to the
solution of the original Dirichlet problem (13) can then be shown by the same arguments as
in the proof of Theorem 4.1.

In the case when E is a Hilbert space with the scalar product 〈·, ·〉, K := B(0, R) and
V (x) := 1

2

(
‖x‖2 −R2

)
, condition (42) becomes

〈x,w〉 ≥ 0,

and we can immediately obtain the following consequence of Theorem 4.3.

Corollary 4.3. Let E be a separable Hilbert space and let us consider the Dirichlet b.v.p.
(13), where F : [0, T ]×E ×E ( E is an upper-Carathéodory multivalued mapping which is
either globally measurable or quasi-compact. Let the conditions (1i) from Proposition 2.3,
(2ii) from Theorem 4.1 and (2iii) from Proposition 2.5 be satisfied. Moreover, let there exist
R > 0 such that

〈x,w〉 ≥ 0 (43)

holds, for a.a. t ∈ (0, T ) and all x ∈ E satisfying ||x|| = R, v ∈ E, and w ∈ F (t, x, v).
Finally, let (29) be valid, with φ as in (24).
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Then the Dirichlet b.v.p. (13) admits a solution x(·) such that ||x(t)|| ≤ R, for all t ∈
[0, T ]. If, moreover, 0 /∈ F (t, 0, 0), for a.a. t ∈ [0, T ], then the obtained solution is nontrivial.

5. Applications. In [5, Example 4.1 and Example 4.2], we proposed some applications of
our techniques to integro-differential equations respectively with discontinuous r.h.s. and
non-homogeneous conditions. In the following, we briefly show their usage in the study of
control problems. Consider the integro-differential equation

utt(t, x) + ut(t, x) = bu(t, x) +

∫
R
k(x, y)u(t, y) dy + f(u(t, x)) + ω(x) (44)

with t ∈ [0, T ], x ∈ R, k : R× R→ R and f : R→ R. The function ω : R→ R accounts the
external forces implemented into the model. We assume that

(a) k ∈ L2(R× R) with ||k||L2(R×R) = 1;
(b) f is L-Lipschitzian with f(0) = 0 and xf(x) > 0, for all x 6= 0;
(c) there exist ω̃0 ∈ AC([α, β]) and ` > 0 satisfying |ω̃ ′0(x)| ≤ ` a.e. in [α, β] ⊂ R, 0 ≤

ω̃0(x) ≤ ω(x) ≤ |u(t, x)|+ ω̃0(x) for a.a. x ∈ [α, β] and t ∈ [0, T ], ω ∈ AC([α, β]) with
|ω ′(x)| ≤ ` a.e. in [α, β], ω(α) = ω̃0(α) and ω ≡ 0 outside [α, β];

(d) b > 1 and (T + 4)(b+ L+ 2)T < 2.

We prove in the following, by means of Corollary 4.1, the existence of u(t, x) with u ∈
C1([0, T ], L2(R)) and ω ∈ AC([α, β]) as in (c) satisfying (44) as well as the Dirichlet condi-
tion

u(0, x) = u(T, x) = 0, ∀x ∈ R. (45)

To this aim, we rewrite (44)–(45) into the abstract setting{
ÿ(t) ∈ F (y(t), ẏ(t)), t ∈ [0, T ],
y(T ) = y(0) = 0,

(46)

where y(t) := u(t, ·) ∈ L2(R), and F : L2(R)× L2(R) ( L2(R) is defined by

F (y, v) := −v + by +K(y) + f̂(y) +D(y)

where K : L2(R) → L2(R), z → (x →
∫
R k(x, y)z(y) dy), f̂ : L2(R) → L2(R), y → (x →

f(y(x))) and the multivalued map D : L2(R) ( L2(R) is given by

D(y) =

z ∈ L2(R) :
z ∈ AC([α, β]),
ω̃0(x) ≤ z(x) ≤ |y(x)|+ ω̃0(x) and |z ′(x)| ≤ ` a.e. in [α, β],
z(α) = ω̃0(α) and z ≡ 0 otherwise.


By similar arguments as in [5, Example 4.1] it is possible to show that K and f̂ are

well-defined with K 1-Lipschitzian and f̂ L-Lipschitzian. Concerning D, it is clear that it
is convex valued and

0 ≤ z(x) ≤ ω0(0) + `(x− α), x ∈ [α, β] z ∈ D(y) and y ∈ L2(R). (47)

We prove now that D is also compact. Indeed, let {zn} ⊂ D(L2(R)). According to (47)
and the definition of D, we can apply the Ascoli–Arzelá Theorem in [α, β]. Passing to a
subsequence, denoted as the sequence, it implies that zn → z in C[α, β]. Assuming z ≡ 0
outside [α, β] we have that zn → z also in L2(R). By similar arguments we can also show
that D has a closed graph and so, since it is compact, it is compact valued and u.s.c. In
conclusion F is u.s.c. with convex, compact values. Moreover condition (1i) in Proposition
2.3 is satisfied and g(t) ≡ b + L + 2. According to (d) also condition (1iii) in Proposition
2.3 is satisfied. As a consequence of (47), we have that D is bounded and let r > 0 be
such that ‖z‖L2(R) ≤ r for all z ∈ D(L2(R)). Let y, v ∈ L2(R) with ‖y‖ ≤ R for some
R > 0; notice that ‖F (y, v)‖ ≤ (b + L + 1)R + r + ‖v‖ and so (24) and (29) are satisfied,
with φ(s) = (b+ L+ 1)R + r + s. Since F is autonomous, also condition (2ii) in Theorem
4.1 is true. Now we prove condition (37). So, let y, v ∈ L2(R) with 〈y, v〉 = 0 and take
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w ∈ F (x, y), implying w = −v+by+K(y)+ f̂(y)+ω1 with ω1 ∈ D(y). Condition (a) implies

that 〈y,K(y)〉 ≥ −‖y‖ while (b) yields that 〈y, f̂(y)〉 ≥ 0. Consequently, since b > 1 (cfr.
(d)), 〈y, w〉+ 〈v, v〉 ≥ bR2 −R2 −Rr > 0 when R is sufficiently large. All the assumptions
of Corollary 4.1 are then satisfied and so the problem (44)–(45) is solvable.

6. Comparison with classical results. In the last section, we will discuss the relations
between classical theorems (for E = Rn and a continuous function f) on one side and the
main results introduced in the previous parts of the paper (formulated for a Banach space
E and multivalued u.s.c. or upper-Carathéodory r.h.s. F ) on the other side.

At first, let us note that if E = Rn and f = F : [0, T ] × Rn × Rn → Rn is continuous,
(24) can be replaced by (3) and (5) (cf. Lemma 3.2).

Moreover, in the case when E = Rn and f = F : [0, T ] × Rn × Rn → Rn is continuous,
the function g appearing in (1i) and (1iii) is equal to 0, and since f is continuous, it
is guaranteed by the second Weierstrass theorem that there exists, for every nonempty,
bounded set Ω ⊂ Rn × Rn, a constant MΩ such that

||F (t, x, y)|| ≤MΩ, (48)

for all (t, x, y) ∈ [0, T ] × Ω. Thus, condition (2ii) is in the finite-dimensional, continuous
case automatically satisfied.

Therefore, we are able to obtain as a direct consequence of Theorem 4.1 and Lemma 3.2
exactly Hartman’s Theorem 1.1.

Moreover, we could also immediately obtain (applying Proposition 2.3, Theorem 4.1 or
Theorem 4.2) the following improvements of results from Remark 1.3:

• The strict inequality in (8) can be replaced by a non-strict one (2).

The result from Remark 1.4 can be also improved using Proposition 2.3, Theorem 4.1 or
Theorem 4.2 as follows:

• The inequality (10) can be replaced by the more general (2).

As a very particular case of Theorem 4.1, we are able to obtain the following generalization
of results from Remarks 1.3 and 1.4.

Corollary 6.1. Let us consider the vector Dirichlet problem (1), where f : [0, T ]×Rn×Rn →
Rn is a continuous function and assume that there exists R > 0 such that the non-strict
inequality

〈f(t, x, y), x〉+ ||y||2 ≥ 0

holds, for all t ∈ [0, T ] and (x, y) ∈ Rn × Rn with ||x|| = R and 〈x, y〉 = 0.
Moreover, let φ : [0,∞)→ (0,∞) be a continuous, nondecreasing function such that

lim
s→∞

s2

φ(s)
=∞

and that

||f(t, x, y)|| ≤ φ(||y||), for all t ∈ [0, T ], and all x ∈ Rn with ||x|| ≤ R and y ∈ Rn.

Then the b.v.p. (1) has a solution x(·) such that ||x(t)|| ≤ R, for all t ∈ [0, T ].

As already mentioned before, as a direct consequence of Theorem 4.1 and Lemma 3.2,
exactly Hartman’s Theorem 1.1 can be obtained. On the other hand, a variant of Theorem
4.1 in Rn, with (29), (24) replaced (in view of Lemma 3.2) by (3), (5), is a significant
generalization of Hartman’s Theorem 1.1 (see also Remark 4.1). This, besides other things,
demonstrates, jointly with Corollary 6.1, the power of our main theorems formulated in
abstract spaces.
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[4] J. Andres, L. Malaguti and M. Pavlačková, On second-order boundary value problems in Banach spaces:

a bound sets approach, Topol. Methods Nonlinear Anal., 37 (2011), 303–341.
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