Despite prejudice cannot be directly observed, nonverbal behaviours provide profound hints on people inclinations. In this paper, we use recent sensing technologies and machine learning techniques to automatically infer the results of psychological questionnaires frequently used to assess implicit prejudice. In particular, we recorded 32 students discussing with both white and black collaborators. Then, we identified a set of features allowing automatic extraction and measured their degree of correlation with psychological scores. Results confirmed that automated analysis of nonverbal behaviour is actually possible thus paving the way for innovative clinical tools and eventually more secure societies.
Spotting prejudice with nonverbal behaviours / Palazzi, Andrea; Calderara, Simone; Bicocchi, Nicola; Vezzali, Loris; DI BERNARDO, GIAN ANTONIO; Zambonelli, Franco; Cucchiara, Rita. - STAMPA. - (2016), pp. 853-862. (Intervento presentato al convegno 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016) tenutosi a Heidelberg, Germany nel 12-16 September 2016) [10.1145/2971648.2971703].
Spotting prejudice with nonverbal behaviours
PALAZZI, ANDREA;CALDERARA, Simone;BICOCCHI, Nicola;VEZZALI, Loris;DI BERNARDO, GIAN ANTONIO;ZAMBONELLI, Franco;CUCCHIARA, Rita
2016
Abstract
Despite prejudice cannot be directly observed, nonverbal behaviours provide profound hints on people inclinations. In this paper, we use recent sensing technologies and machine learning techniques to automatically infer the results of psychological questionnaires frequently used to assess implicit prejudice. In particular, we recorded 32 students discussing with both white and black collaborators. Then, we identified a set of features allowing automatic extraction and measured their degree of correlation with psychological scores. Results confirmed that automated analysis of nonverbal behaviour is actually possible thus paving the way for innovative clinical tools and eventually more secure societies.File | Dimensione | Formato | |
---|---|---|---|
ubicomp_spotting-prejudice.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Vezzali p853-palazzi.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
520.87 kB
Formato
Adobe PDF
|
520.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris