The paper contains a representation formula for positive solutions of linear degenerate second-order equations of the form of "sum of squares of vector fields plus a drift term" where the vector fields X_j's satisfy the Hörmander condition. It is assumed that X_j's are invariant under left translations of a Lie group and the corresponding paths satisfy a local admissibility criterion. The representation formula is established by an analytic approach based on Choquet theory. As a consequence we obtain Liouville-type theorems and uniqueness results for the positive Cauchy problem.

On Liouville-type theorems and the uniqueness of the positive Cauchy problem for a class of hypoelliptic operators / Kogoj, Alessia E.; Pinchover, Yehuda; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - ELETTRONICO. - 16:4(2016), pp. 905-943. [10.1007/s00028-016-0325-7]

On Liouville-type theorems and the uniqueness of the positive Cauchy problem for a class of hypoelliptic operators

POLIDORO, Sergio
2016

Abstract

The paper contains a representation formula for positive solutions of linear degenerate second-order equations of the form of "sum of squares of vector fields plus a drift term" where the vector fields X_j's satisfy the Hörmander condition. It is assumed that X_j's are invariant under left translations of a Lie group and the corresponding paths satisfy a local admissibility criterion. The representation formula is established by an analytic approach based on Choquet theory. As a consequence we obtain Liouville-type theorems and uniqueness results for the positive Cauchy problem.
2016
16
4
905
943
On Liouville-type theorems and the uniqueness of the positive Cauchy problem for a class of hypoelliptic operators / Kogoj, Alessia E.; Pinchover, Yehuda; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - ELETTRONICO. - 16:4(2016), pp. 905-943. [10.1007/s00028-016-0325-7]
Kogoj, Alessia E.; Pinchover, Yehuda; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
ASY-Liouville-11_2_16.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 428.43 kB
Formato Adobe PDF
428.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1107542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact