State of the art approaches for saliency prediction are based on Full Convolutional Networks, in which saliency maps are built using the last layer. In contrast, we here present a novel model that predicts saliency maps exploiting a non-linear combination of features coming from different layers of the network. We also present a new loss function to deal with the imbalance issue on saliency masks. Extensive results on three public datasets demonstrate the robustness of our solution. Our model outperforms the state of the art on SALICON, which is the largest and unconstrained dataset available, and obtains competitive results on MIT300 and CAT2000 benchmarks.

Multi-Level Net: a Visual Saliency Prediction Model / Cornia, Marcella; Baraldi, Lorenzo; Serra, Giuseppe; Cucchiara, Rita. - 9914:(2016), pp. 302-315. (Intervento presentato al convegno Fourth International Workshop on Assistive Computer Vision and Robotics tenutosi a Amsterdam, The Netherlands nel October 9th, 2016) [10.1007/978-3-319-48881-3_21].

Multi-Level Net: a Visual Saliency Prediction Model

CORNIA, MARCELLA;BARALDI, LORENZO;SERRA, GIUSEPPE;CUCCHIARA, Rita
2016

Abstract

State of the art approaches for saliency prediction are based on Full Convolutional Networks, in which saliency maps are built using the last layer. In contrast, we here present a novel model that predicts saliency maps exploiting a non-linear combination of features coming from different layers of the network. We also present a new loss function to deal with the imbalance issue on saliency masks. Extensive results on three public datasets demonstrate the robustness of our solution. Our model outperforms the state of the art on SALICON, which is the largest and unconstrained dataset available, and obtains competitive results on MIT300 and CAT2000 benchmarks.
2016
Fourth International Workshop on Assistive Computer Vision and Robotics
Amsterdam, The Netherlands
October 9th, 2016
9914
302
315
Cornia, Marcella; Baraldi, Lorenzo; Serra, Giuseppe; Cucchiara, Rita
Multi-Level Net: a Visual Saliency Prediction Model / Cornia, Marcella; Baraldi, Lorenzo; Serra, Giuseppe; Cucchiara, Rita. - 9914:(2016), pp. 302-315. (Intervento presentato al convegno Fourth International Workshop on Assistive Computer Vision and Robotics tenutosi a Amsterdam, The Netherlands nel October 9th, 2016) [10.1007/978-3-319-48881-3_21].
File in questo prodotto:
File Dimensione Formato  
0029.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1104834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact