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Abstract. State of the art approaches for saliency prediction are based
on Fully Convolutional Networks, in which saliency maps are built using
the last layer. In contrast, we here present a novel model that predicts
saliency maps exploiting a non-linear combination of features coming
from different layers of the network. We also present a new loss function
to deal with the imbalance issue on saliency masks. Extensive results
on three public datasets demonstrate the robustness of our solution. Our
model outperforms the state of the art on SALICON, which is the largest
and unconstrained dataset available, and obtains competitive results on
MIT300 and CAT2000 benchmarks.

Keywords: Visual Saliency, Saliency Prediction, Convolutional Neural
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1 Introduction

For many applications in image and video compression, video re-targeting and
object segmentation, estimating where humans look in a scene is an essen-
tial step [9,22,6]. Neuroscientists [2], and more recently computer vision re-
searches [13], have proposed computational saliency models to predict eye fixa-
tions over images.

Most traditional approaches typically cope with this task by defining hand-
crafted and multi-scale features that capture a large spectrum of stimuli: lower-
level features (color, texture, contrast) [11] or higher-level concepts (faces, peo-
ple, text, horizon) [5]. In addition, since there is a strong tendency to look more
frequently around the center of the scene than around the periphery [33], some
techniques incorporate hand-crafted priors into saliency maps [36,35,20,19]. Un-
fortunately, eye fixation can depend on several aspects and this makes it difficult
to design properly hand-crafted features.

Deep learning techniques, with their ability to automatically learn appro-
priate features from massive annotated data, have shown impressive results in
several vision applications such as image classification [18] and semantic seg-
mentation [24]. First attempts to define saliency models with the usage of deep
convolutional networks have recently been presented [35,20]. However, due to
the small amount of training data in this scenario, researchers have presented
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networks with few layers or pretrained in other contexts. By publishing the large
dataset SALICON [12], collected thanks to crowd-sourcing techniques, researches
have then increased the number of convolutional layers reducing the overfitting
risk [19,25].

In this paper we present a general deep learning framework to predict saliency
maps, called ML-Net. Differently from the previous deep learning approaches,
that build saliency images based on the last convolutional layer, we propose a
network that is able to combine multiple features coming from different layers of
the network. The proposed solution is also able to learn its own prior from the
training data, avoiding an hand-crafted definition. Finally, a new loss function is
presented to tackle the imbalance problem of saliency maps, in which salient pix-
els are usually a minor percentage. Experimental results on three public datasets
validate our solution.

2 Related works

Early works on saliency detection were concerned with defining biologically-
plausible architecture inspired by the human visual attention system. Koch,
Ullman [17] and Itti et al. [13] were among the earliest ones. In particular, they
proposed to extract multi-scale image features based on color, intensity and
orientation, mimicking the properties of primate early vision. More recently,
Hou and Zange [11] presented a technique based on log spectral representations
of images, which extracted the spectral residual of an image, thus simulating the
behavior of pre-attentive visual search. Differently, Torralba et al. [34] showed
how the human visual system makes extensive use of contextual information in
natural scenes. Similarly, Goferman et al. [8] proposed an approach that detects
salient regions which are distinctive with respect to both their local and global
surroundings. Judd et al. [16] and Cerf et al. [5] presented two techniques based
on the combination of low-level features (color, orientation and intensity) and
high-level semantic information (i.e. the location of faces, cars and text) and
showed that this strategy significantly improves saliency prediction. However,
all these methods employed hand-tuned features or trained specific higher-level
classifiers.

Recently, Deep Convolutional Networks (DCNs) were used by several authors
and appear much more appropriate to support saliency detection. Indeed, DCNs
have been proved to be able to build descriptive features. Vig et al. [35] pre-
sented Ensembles of Deep Networks (eDN), a convolutional neural network with
three layers. Since the annotated data available at that time to learn saliency
was limited, their architecture could not outperform the current state-of-the art.
To overcome this problem, Kiimmerer et al. [20] suggest to reuse existing neural
networks trained for object recognition and propose Deep Gaze, a neural net-
work based on the AlexNet [18] architecture. Similarly, Huang et al. [12] present
a DCN architecture for saliceny prediction that combines multiple DCNs pre-
trained for object recognition (AlexNet [18], VGG-16 [30] and GoogLeNet [32]).
The fine-tuning procedure of this architecture is performed using an objective
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Fig. 1. Architecture of ML-Net.

function based on saliency evaluation metrics, such as the Normalized Scanpath
Saliency, Similarity and KL-Divergence.

Liu et al. [23] present a multi-resolution Convolutional Neural Network which
is trained from image regions centered on fixation and non-fixation locations over
multiple resolutions. Srinivas et al. [19] propose a network, called DeepFix, that
includes Location Biased Convolution filters able to identify location dependent
patterns. Pan et al. [25] show how two different architectures, a shallow convent
trained from scratch and a deep convent that uses parameters previous learned
on the ILSVRC-12 dataset [29], can achieve state of the art results.

3 Owur Approach

We argue that saliency prediction can benefit from both low level and high level
features. For this reason, we build a saliency prediction model which combines
features extracted at multiple levels from a Fully Convolutional Neural Network
(FCN). Since the role of this network in our model is that of extracting features,
instead of predicting a saliency map, we call this component Feature extraction
network. An Encoding network is then designed to weight and combine feature
maps extracted from the FCN, and training is performed by means of a loss
function which tackles the problem of imbalance on saliency maps. An overview
of our architecture, which we call ML-Net, is presented in Fig. 1.

3.1 Feature extraction network

Current Fully Convolutional models can be described as sequences of convolu-
tional and max-pooling layers, which process an input tensor to produce activa-
tion maps. Due to the presence of spatial pooling layers, convolutional layers with
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Table 1. Output size of each layer of the FCN models used in our architecture. First
column is the model inspired by VGG-16, second column is the one inspired by VGG-19
and the last one is inspired by AlexNet.

Input 3 x 480 x 640
convl-1 | 64 x 480 x 640
convl-2 | 64 x 480 x 640

maxpooll| 64 x 240 x 320
conv2-1 [128 x 240 x 320
conv2-2 (128 x 240 x 320

maxpool2|128 x 120 x 160
conv3-1 (256 x 120 x 160

Input 3 x 480 x 640
convl-1 | 64 x 480 x 640
convl-2 | 64 x 480 x 640

maxpooll| 64 x 240 x 320
conv2-1 [128 x 240 x 320
conv2-2 (128 x 240 x 320

Input |3 x 480 x 640

maxpool2|128 x 120 x 160 conva-2 1256 x 120 x 160 convl |96 x 118 x 158

conv3-1 |256 x 120 x 160 maxpooll| 96 x 58 x 78
conv3-3 256 x 120 x 160

conv3-2 [256 x 120 x 160 3.4 1956 % 120 x 160 conv2 | 256 x 58 x 78

conv3-3 256 x 120 x 160| | "V maxpool2| 256 x 56 x 76

maxpool3| 256 x 60 x 80
maxpool3| 256 x 60 x 80 convil T 512 X 60 x 80 conv3 | 384 x 56 x 76

conv4-1 | 512 x 60 x 80 convd | 384 x 56 x 76
conv4-2 | 512 x 60 x 80
conv4-2 | 512 x 60 x 80 convb | 256 x 56 x 76
conv4-3 | 512 x 60 x 80

conv4-3 | 512 x 60 x 80
conv4-4 | 512 x 60 x 80

maxpoold| 512 x 60 x 80
maxpoold| 512 x 60 x 80

convb-1 | 512 x 60 x 80
convb-1 | 512 x 60 x 80

convH-2 | 512 x 60 x 80
convB-3 | 512 x 60 x 80 convH-2 | 512 x 60 x 80
convd-3 | 512 x 60 x 80

convb-4 | 512 x 60 x 80

stride greater than one, or border effects, activation maps are usually smaller
than input images.

The spatial resolution of an intermediate activation map, with respect to the
input of the layer, can be written as (LMJ + 1) X ({WJ + 1), where

H x W is the spatial resolution of the input, s is the stride, p is the padding and &
is the kernel size. For instance, the AlexNet model [18] by Krizhevsky et al. uses
different values of s, p and k across different layers (s = 4, p = 0 and k = 11
in the first convolutional layer, s = 1,p = 1,k = 3 for the last convolutional
layer), while VGG-16 and VGG-19 models [31] use s = 1, p =1 and k = 3 for
convolutional layers and s = 2,p = 0, k = 2 for max-pooling layers.

To combine low level and high level features extracted from a FCN model,
one could in principle reduce activation maps to a common spatial resolution,
through downsampling or upsampling operations, and then concatenate them to
form a single feature tensor. In contrast to this approach, which would imply a
loss of information, in the case of downsampling, or a non-exact reconstruction
of missing information, in the case of upsampling, we modify the stride of some
layers in order to maintain the same spatial resolution across different layers.
We apply this technique to three popular CNN models: VGG-16, VGG-19 and
AlexNet.
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In the case of the VGG-16 model, we set the stride on layer maxpool4 to one,
so to have activation maps from layers conv5-3, maxpool4 and maxpool3 with
the same spatial size. We do the same in the VGG-19 model, again by setting the
stride of maxpool4 to one and considering feature maps from layers conv5-4,
maxpool4d and maxpool3. Finally, for the AlexNet model, we set the stride of
layer maxpool2 equal to one, to have the output of layers maxpooll, maxpool2
and convb having almost the same spatial support. These activation maps are
then zero-padded to bring them to the same spatial resolution. All three models,
as well as the output size of each of their layers, are reported in Table 1 for
reference.

3.2 Encoding network

Since feature maps extracted from the FCN model have the same spatial reso-
lution, it is reasonable to concatenate them to form a single feature tensor. It
is worth mentioning that the resulting tensor encodes features extracted from
different levels of a FCN, and thus it is far more informative than the activation
tensor coming from the last convolutional layer, which is usually employed to
predict fixation maps. Beside containing high level features, like the responses
to object detectors and part of object detectors, indeed, it contains responses to
middle level features, like textures.

To combine features maps coming from different levels, and in order to form
the final saliency map, we build an encoding network, whose aim is to weight
low level, middle level and high level features to produce a provisional saliency
prediction. The encoding network is composed of two convolutional layers, the
first one having kernel size 3 x 3 and 64 feature maps, and the last one having
a 1 x 1 kernel and a single feature map. Being the two convolutional layers
separated by a ReLLU activation stage, the provisional prediction can be a non-
linear combination of input activation maps.

3.3 Prior learning

The combination of a FCN model with the previously defined encoding network
lets the network learn more robust saliency features, thus increasing the accuracy
of predicted saliency maps. However, what the encoding network can not deal
with is the role of the relative and absolute position of salient areas in the
image. Indeed, the center of an image is well known to be more salient than the
periphery, and this notion is usually incorporated in saliency models by means
of a prior. Instead of using an hand-crafted prior, as done in the past, we let the
network learn its own prior.

In particular, we learn a coarse w’ x h’ mask, which is upsampled and ap-
plied to the predicted saliency map with pixel-wise multiplication. The mask is
initialized to one, so that the network can learn a prior by reducing excessive
values.

Given the learned prior U with shape w’ x h’, we interpolate the pixels of U
to produce an output prior map V of size w x h, being w and h respectively the
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width and height of the predicted saliency map. We compute a sampling grid
G of shape w’ x I’ associating each element of U with real-valued coordinates
into V. If G; ; = (x5, v:,;) then U; ; should be equal to V' at (x; ;, s ;); however
since (z; j,v; ;) are real-valued, we convolve with a sampling kernel and set

w'  h
Vo =2 Y Uijke(® — i j)ky(y — vij) (1)

i=1 j=1
where k,(-) and k, (-) are bilinear kernels, corresponding to k, (d) = max (0, %% — |d])
and ky(d) = max (0 —|d|). w’" and b/ were set to |w/10] and [h/10] in all

our tests.

3.4 Training

For training, we randomly sample a minibatch containing N training saliency
maps, and encourage the network to minimize a loss function through Stochastic
Gradient Descent. While the majority of saliency prediction models employ a
MSE or a KL-Divergence loss, we build a custom loss function which tackles the
problem of imbalance in saliency maps.

Our loss function is motivated by three observations: first of all, predictions
should be pixelwise similar to ground truth maps, therefore a square error loss
|#(x:) — yil?, between the predicted saliency map ¢(x;) and the ground-truth
map y;, is a reasonable starting model. Secondly, predicted maps should be
invariant to their maximum, and there is no point in forcing the network to
produce values in a given numerical range, so predictions are normalized by
their maximum. Third, the loss should give the same importance to high and low
ground truth values, even though the majority of ground truth pixels are close to
zero. For this reason, the deviation between predicted and ground-truth values
is weighted by a linear function « —y;, which tends to give more importance to
pixels with high ground-truth fixation probability.

The overall loss function is thus

$(xi)

N maxg(x) Vi —Yi
Z o) +A1-U|? (2)
i—1 a—Yy;

where a Lo regularization term is added to penalize the deviation of the prior
mask U from its initial value, thus encouraging the network to adapt to ground
truth maps by changing convolutional weights rather than modifying the prior.

4 Experimental evaluation

4.1 Datasets

For training and evaluation we employ the following datasets: SALICON [14],
MIT1003 [16], MIT300 [15] and CAT2000 [1].
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SALICON contains 20,000 images taken from the Microsoft CoCo dataset [21]
and divided in 10,000 training images, 5,000 validation images and 5,000 testing
images. It is currently the largest public dataset available for saliency prediction
though its saliency maps were not collected with eye-tracking systems as in
classical datasets for saliency prediction. Saliency maps were indeed generated
by collecting mouse movements, and authors showed, both qualitatively and
quantitatively, an high degree of similarity between their maps and those created
from eye-tracking data.

MIT1003 includes 1003 random images taken from Flickr and LabelMe. Its
saliency maps were generated using eye-tracking data from fifteen participants.
MIT300 contains 300 natural images from both indoor and outdoor scenarios.
Despite its limited size, it is the one of the most commonly used datasets for
saliency prediction. Its saliency maps, that have been created from eye-tracking
data of 39 observers, are not public available. To evaluate the effectiveness of
our model on this dataset, we submitted our predictions to the MIT saliency
benchmark [3].

CAT2000 is a collection of 4,000 images divided in 20 different categories
such as Cartoons, Art, Satellite, Low resolution images, Indoor, Outdoor, Line
drawings, ect. and each category contains 200 images. Saliency maps of this
dataset have been created using eye-tracking data from 24 users. Images are
divided in training set and test set where each of them consists of 2,000 images.
Saliency maps of the test set are held-out and also in this case we submitted
our predictions to the MIT saliency benchmark to evaluate performances of our
model.

4.2 Evaluation metrics

Several evaluation metrics have been proposed for saliency predictions: Normal-
ized Scanpath Saliency (NSS), Earth Mover’s Distance (EMD), Linear Corre-
lation Coefficient (CC), Similarity, AUC Judd, AUC Borji and AUC shuffled
(sAUC). Some of these metrics consider saliency at discrete fixation locations,
while others treat both predicted saliency maps and ground truth maps, gener-
ated from fixation points, as distributions [4], [27].

The Normalized Scanpath Saliency (NSS) metric was introduced specifically
for the evaluation of saliency models [26]. The idea is to quantify the saliency
map values at the eye fixation locations and to normalize it whit the saliency
map variance

SM(p) — psm
OSM

NSS(p) = (3)

where p is the location of one fixation and SM is the saliency map which is

normalized to have a zero mean and unit standard deviation. The final NSS
score is the average of N.SS(p) for all fixations

N
NSS = % ,; NSS(p) (4)
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where N is the total number of eye fixations.

Earth Mover’s Distance (EMD) represents the minimal cost to transform the
probability distribution of the saliency map SM into the one of the human eye
fixations F'M. Therefore, a larger EMD indicates a larger difference between the
two maps.

The Linear Correlation Coefficient (CC) instead is the Pearson’s linear coef-
ficient between SM and F M and is computed as

conv(SM, FM)

OSM *OFM

CcC = (5)
It ranges between —1 and 1, and a score close to —1 or 1 indicates a perfect
linear relationship between the two maps.

The Similarity metric [15] is computed as the sum of pixel-wise minimums
between the predicted saliency map SM and the human eye fixation map F'M,
after normalizing the two maps

X
S = me(SM(x),FM(m)) (6)

=1

where SM and F'M are supposed to be probability distributions and sum up
to one. A similarity score of one indicates that the predicted map is identical to
the ground truth one.

Finally, the Area Under the ROC curve (AUC) is one of the most widely used
metrics for the evaluation of maps predicted from saliency models. The saliency
map is treated as a binary classifier of fixations at various threshold values, and
a ROC curve can be drawn by measuring the true and false positive rates under
each binary classifier. There are several different implementations of this metric
which differ in how true and false positives are calculated. In our experiments we
use AUC Judd, AUC Borji and shuffled AUC. The AUC Judd and the AUC Borji
choose non-fixation points with a uniform distribution, otherwise shufled AUC
uses human fixations of other images in the dataset as non-fixation distribution.
In that way, centered distribution of human fixations of the dataset is taken into
account.

4.3 Implementation details

Using the three feature extraction networks described in Section 3.1 (inspired
by AlexNet, VGG-16 and VGG-19), we build three different variations of our
saliency prediction model. Weights of all feature extraction networks are ini-
tialized to those of pre-trained models on the ILSVRC-12 dataset [29], while
weights of the encoding networks are initialized according to [7], and biases are
initialized to zero. SGD is applied with Nesterov momentum 0.9, weight decay
0.0005 and learning rate 10~3. Parameters o and \ are respectively set to 1.1
and 1/(w’ - ') in all our experiments. Finally, the batch size N is set to 10.
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Fig. 2. Comparison between our three ML-Nets on SALICON dataset [14]. Each plot
corresponds to a different evaluation metric (i.e. CC, sAUC, AUC Judd and NSS). Plots
a~d correspond to the results on SALICON validation set, while plots e-h correspond
to the results on SALICON test set.

We evaluate on the SALICON, on the MIT300 and on the CAT2000 datasets.
First of all, we train our network on SALICON training set using the 5,000 im-
ages of SALICON validation set to validate the model. Secondly, we finetune our
architecture on the MIT1003 dataset and on the CAT2000 training set to evalu-
ate our model also on MIT300 dataset and CAT2000 testing set, respectively. In
particular, we randomly split images of MIT1003 in 900 training images and 103
validation images and, after the training, we test our model on MIT300. For the
CAT2000 instead, we randomly choose 200 images of training set (10 images for
each category) as validation and we finetune the network on remaining images.
Finally we test our network on the CAT2000 testing set.

Images from all datasets were resized to 640 x 480. In particular, images
of MIT1003 and MIT300 datasets were zero-padded to fit a 4 : 3 aspect ratio
and then resized to 640 x 480, while images from CAT2000 dataset were resized
and then cropped to have a dimension of 640 x 480. Predicted saliency maps are
upsampled with bicubic interpolation to the original image size before evaluation.

4.4 Quantitative results

To investigate the performance of our solution, we first conduct a series of ex-
periments on the SALICON dataset using the three different feature extraction
networks. Fig. 2 reports the results of our architecture when using the three FCN
in terms of CC, AUC shuffled, AUC Judd and NSS. VGG-16 and VGG-19 can
clearly extract better features than the AlexNet model, and VGG-19 achieves
the best performance according to all performances measures.

In Table 2 we then compare the performance of our model on the SALICON
test set with respect to the current state of the art, in terms of CC, AUC shuf-



10 M. Cornia, L. Baraldi, G. Serra, R. Cucchiara

Table 2. Comparison results on the SALICON test set [14].

CC |sAUC |AUC Judd
ML-Net (VGG-19) (0.7562|0.7782| 0.8721
Pan et al. [25] - Deep |0.6220|0.7240 | 0.8580
Pan et al. [25] - Shallow| 0.5957 | 0.6698 | 0.8364

WHU IIP 0.4569 | 0.6064 | 0.7923
Rare 2012 Improved [28]|0.5108 | 0.6644 | 0.8148
Xidian 0.4811 | 0.6809 | 0.8051
Baseline: BMS [37] 0.4268 | 0.6935 | 0.7899
Baseline: GBVS [10] 0.4212 | 0.6303 | 0.7899
Baseline: Itti [13] 0.2046 | 0.6101 | 0.6669

Table 3. Comparison results on the MIT300 dataset

15].

Sim | CC |sAUC|AUC Borji|AUC Judd|NSS |EMD
Infinite humans 1.00(1.00| 0.80 0.87 0.91 3.18| 0.00
DeepFix [19] 0.67(0.78| 0.71 0.80 0.87 2.26| 2.04
SALICON [12] 0.60(0.74| 0.74 0.85 0.87 2.12| 2.62
ML-Net (VGG-19) |0.60/0.69| 0.70 0.77 0.85 2.06|2.45
Pan et al. - Deep [25] 0.52|0.58| 0.69 0.82 0.83 1.51|3.31
BMS [37] 0.51]0.55| 0.65 0.82 0.83 1.41| 3.35
Deep Gaze 2 [20] 0.46|0.51| 0.76 0.86 0.87 1.29| 4.00
Mr-CNN [23] 0.4810.48| 0.69 0.75 0.79 1.37| 3.71
Pan et al. - Shallow [25] |0.46 |0.53 | 0.64 0.78 0.80 1.47| 3.99
GBVS [10] 0.48(0.48| 0.63 0.80 0.81 1.24| 3.51
Rare 2012 Improved [28]|0.46 | 0.42| 0.67 0.75 0.77 1.34| 3.74
Judd [16] 0.42(0.47| 0.60 0.80 0.81 1.18| 4.45
eDN [35] 0.41(0.45| 0.62 0.81 0.82 1.141| 4.56

fled and AUC Judd. As it can be noticed, our solution outperforms all other
approaches by a significant margin on all evaluation metrics.

We also evaluate our model on two others publicly available saliency bench-
marks, MIT300 and CAT2000. Table 3 compares the results of our approach
to the top performers of MIT300, while Table 4 reports performances on the
CAT2000 benchmark. Our method outperforms the majority of the solutions in
both leaderboards, and achieves competitive results when compared to the top
ranked approaches.

4.5 Qualitative results

Figures 3 and 4 present instead a qualitative comparison showing ten randomly
chosen input images from SALICON and MIT1003 datasets, their correspond-
ing ground truth annotations and predicted saliency maps. These examples show
how our approach is able to predict saliency maps that are very similar to the
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Table 4. Comparison results on the CAT2000 test set [1].

Sim | CC [sAUC|AUC Borji|AUC Judd|NSS|EMD
Infinite humans 1.00|1.00| 0.62 0.84 0.90 2.85| 0.00
DeepFix [19] 0.74(0.87| 0.58 0.81 0.87 2.28|1.15
ML-Net (VGG-19) |0.68|0.78| 0.58 0.81 0.86 2.00|1.16
BMS [37] 0.61]0.67| 0.59 0.84 0.85 1.67|1.95
eDN [35] 0.52(0.54| 0.55 0.84 0.85 1.30]| 2.64
Rare 2012 Improved [28]|0.54 | 0.57 | 0.59 0.81 0.82 1.44| 2.72
GBVS [10] 0.51]0.50| 0.63 0.79 0.80 1.23 2.99
Judd [16] 0.46 (0.54| 0.56 0.84 0.84 1.30]| 3.61

ground truth, while saliency maps generated by other methods are far less con-
sistent with the ground truth.

5 Conclusions

In this paper we presented a new end-to-end trainable network for saliency pre-
diction called ML-Net. Our solution learns a non-linear combination of multi-
level features extracted from different layer of the CNN and a prior map. Qual-
itative and quantitative results on three public benchmarks show the validity of
our proposal.
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