Nowadays, egocentric wearable devices are continuously increasing their widespread among both the academic community and the general public. For this reason, methods capable of automatically segment the video based on the recorder motion patterns are gaining attention. These devices present the unique opportunity of both high quality video recordings and multimodal sensors readings. Significant efforts have been made in either analyzing the video stream recorded by these devices or the bio-mechanical sensor information. So far, the integration between these two realities has not been fully addressed, and the real capabilities of these devices are not yet exploited. In this paper, we present a solution to segment a video sequence into motion activities by introducing a novel data fusion technique based on the covariance of visual and bio-mechanical features. The experimental results are promising and show that the proposed integration strategy outperforms the results achieved focusing solely on a single source.
Motion Segmentation using Visual and Bio-mechanical Features / Alletto, Stefano; Serra, Giuseppe; Cucchiara, Rita. - (2016). (Intervento presentato al convegno ACM Multimedia tenutosi a Amsterdam nel Ottobre 2016) [10.1145/2964284.2967266].
Motion Segmentation using Visual and Bio-mechanical Features
ALLETTO, STEFANO;SERRA, GIUSEPPE;CUCCHIARA, Rita
2016
Abstract
Nowadays, egocentric wearable devices are continuously increasing their widespread among both the academic community and the general public. For this reason, methods capable of automatically segment the video based on the recorder motion patterns are gaining attention. These devices present the unique opportunity of both high quality video recordings and multimodal sensors readings. Significant efforts have been made in either analyzing the video stream recorded by these devices or the bio-mechanical sensor information. So far, the integration between these two realities has not been fully addressed, and the real capabilities of these devices are not yet exploited. In this paper, we present a solution to segment a video sequence into motion activities by introducing a novel data fusion technique based on the covariance of visual and bio-mechanical features. The experimental results are promising and show that the proposed integration strategy outperforms the results achieved focusing solely on a single source.File | Dimensione | Formato | |
---|---|---|---|
acm_wearable_sensors.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
673.68 kB
Formato
Adobe PDF
|
673.68 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris