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ABSTRACT
Nowadays, egocentric wearable devices are continuously in-
creasing their widespread among both the academic com-
munity and the general public. For this reason, methods
capable of automatically segment the video based on the
recorder motion patterns are gaining attention. These de-
vices present the unique opportunity of both high quality
video recordings and multimodal sensors readings. Signif-
icant efforts have been made in either analyzing the video
stream recorded by these devices or the bio-mechanical sen-
sor information. So far, the integration between these two
realities has not been fully addressed, and the real capabili-
ties of these devices are not yet exploited. In this paper, we
present a solution to segment a video sequence into motion
activities by introducing a novel data fusion technique based
on the covariance of visual and bio-mechanical features. The
experimental results are promising and show that the pro-
posed integration strategy outperforms the results achieved
focusing solely on a single source.

General Terms
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1. INTRODUCTION
Due to the wide spreading of head-mounted cameras, sys-

tems dealing with an egocentric perspective are arousing a
growing interest in industries and in the research commu-
nity. Egocentric videos captured with wearable cameras are
long and unstructured, and their continuous nature yields
no evident shot boundaries. Information such as events and
personal experiences cannot be comfortably reviewed but re-
quire a manual search through the video sequences, which
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can be several hours long. For this reason, the need for auto-
mated tools that assist users in accessing to the information
in such videos is clear.

Several works tackle with problems such as activity and
gesture recognition, social interactions or object recognition
exploiting the unique perspective of wearable cameras [6, 1,
2]. Although these approaches are robust enough in special-
ized contexts and short activities they are not designed to
analyze long and unconstrained videos in order to identify
interesting segments of video that contain relevant informa-
tion.

Recently, Lu and Grauman [10] handled egocentric video
summarization partitioning videos into relevant sub-shots
on the basis of motion features analysis. They segment the
video in three classes: static, moving the head, in tansit
and smooth the classification results with a Markov Ran-
dom Field. Kitani et al. [8] present an unsupervised learn-
ing approach that uses motion-based histograms in order
to classify ego-action categories. Poleg et al. [12] propose
to temporally segment an egocentric video into twelve long
time activities (such as walking, running and wheels) using
classifiers trained on feature vectors derived from the cumu-
lative displacement curves.

While these methods address a key problem of egocen-
tric video, they are doing so disregarding a major feature
of many modern wearable devices. From smartphones to
Google Glass, many of these devices equip bio-mechanical
sensors such as accelerometers and gyroscopes. In fact, the
low costs, low power requirements and small dimensions of
these sensors make them perfect for embedded and wear-
able applications. A new range of applications and tech-
niques arise from their use: Li et al. [9] employ gyroscope
and accelerometer to detect the posture of a subject, fo-
cusing on harmful situations like falls. Recently, the high
precision of these sensors has been exploited by Hernandez
et al. [7] to predict in real-time physiological parameters of
their user such as heart and respiration rates. Differently,
Brunetto et al. [3] exploit sensor information in a SLAM
framework where accelerometer and gyroscope are combined
with a RGB-D camera and are employed to enforce the ori-
entation estimation, effectively improving the keyframe ex-
traction process.

In this paper, we propose a novel approach to integrate a
robust visual motion descriptor, namely Optical Flow (the
key descriptor exploited in the aforementioned ego-vision
video segmentation approaches [10, 8, 12]), with heteroge-
neous sensor data. In particular, our proposal is to build
a descriptor based on the covariance of visual and iner-
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Figure 1: A schematization of the proposed solution.

tial information. In contrast with common early fusion ap-
proaches which directly combine (e.g concatenating the re-
sulting feature vectors) heterogeneous data, our strategy al-
lows to capture the correlation between visual and inertial
features. The results obtained are encouraging and demon-
strate clear benefits in the integration between visual and
bio-mechanical features.

Furthermore, due to the novelty of the proposed study, we
contribute to further research efforts on the matter releasing
both the dataset and the source code. The dataset, referred
as EGO-SENSORS in the following, features several hours
of egocentric video coupled with tri-axial accelerometer and
gyroscope data, fully annotated at a frame level with the
current motion label.

2. MOTION SEGMENTATION
To segment egocentric videos into motion classes, we ana-

lyze the visual and bio-mechanical data stream coming from
a glass-mounted wearable device, which features a camera, a
tri-axial accelerometer and a tri-axial gyroscope. The Figure
1 depicts a schematization of our solution.

In particular, we analyze the multimodal stream using
a sliding window approach. Two different sets of windows
are considered: a smaller window W = {f1, . . . , fN} that
aggregates motion features for each frame, and a larger one
S = {W1, . . . ,WM} that aggregates windows (N and M are
the size of the two windows respectively). The frame-level
window W allows to compute metrics over small temporal
intervals: this choice balances the trade-off between fine in-
formation grain and noise, and the 50% overlap between
windows has demonstrated to improve sampling robustness
[13]. For each window W, motion features are extracted
from the visual content and from the tri-axial accelerometer
and gyroscope respectively (see subsection 2.1 and subsec-
tion 2.2). The windows S aggregates small windows into
larger and more temporally relevant sequences spanning a
few seconds of video.

To deal with these heterogeneous data we propose an ap-
proach that efficiently integrates and captures the correla-
tion between them. In particular, let S be a set of descriptors

extracted on a large window, where Wi = [mvimbi] is the
concatenation of heterogeneous features of the sub-window
Wi, we represent them by a covariance matrix C. It en-
codes information about the variance of the features and
their correlations and is computed as follows:

C =
1

N − 1

N∑
i=1

(Wi −m)(Wi −m)T , (1)

where m is the mean vector of the set Wi. Although the
space of covariance matrices can be formulated as a differ-
entiable manifold, it does not lie in a vector space (e.g the
covariance space is not closed under multiplication with a
negative scalar) and Euclidean distance between image de-
scriptors can not be computed. Therefore to use this descrip-
tive feature vector, we need to define a suitable transforma-
tion. We exploit a projection from the Riemannian manifold
to an Euclidean tangent space, called Log-Euclidean metric
as suggested by [14]. The basic idea of the Log-Euclidean
metric is to construct an equivalent relationship between the
Riemannian manifold and the vector space of the symmetric
matrix.

The first step is the projection of the covariance matrix
on an Euclidean space tangent to the Riemannian manifold,
on a specific tangency matrix T. The second one is the
extraction of the orthonormal coordinates of the projected
vector. In the following, matrices (points in the Riemannian
manifold) will be denoted by bold uppercase letters, while
vectors (points in the Euclidean space) by bold lowercase
ones. The projection of C on the hyperplane tangent to T
becomes:

c = vecI
(

log
(
T− 1

2CT− 1
2

))
, (2)

where log is the matrix logarithm operator and I is the
identity matrix, while the vector operator on the tanget
space at identity of a symmetric matrix Y is defined as:



vecI(Y) =
[
y1,1
√

2y1,2
√

2y1,3 . . . y2,2
√

2y2,3 . . . yd,d
]
.

(3)
As observed in [11], by computing the sectional curvature

of the Riemmanian manifold, the natural generalization of
the classical Gaussian curvature for surfaces, it is possible
to show that this space is almost flat. This means that
the neighborhood relation between the points on the man-
ifold remains unchanged, wherever the projection point T
is located. Therefore, from a computational point of view,
the best choice for T is the identity matrix, which simply
translates the mapping into applying the vecI operator to
the standard matrix logarithm. This also frees us from the
problem of optimizing the projection point for the specific
data under consideration, leading to a generally applicable
descriptor. Since the projected covariance is a symmetric
matrix of d× d values, the image descriptor is a (d2 + d)/2-
dimensional feature vector.

The feature vectors resulting from this analysis are ex-
tremely descriptive and can be used to train a linear SVM
classifier. This is particularly favorable due to the consid-
ered setting of embedded wearable devices that often fea-
tures limited hardware capabilities and real-time processing
needs.

2.1 Visual Motion Descriptor
To represent the visual components of apparent motion in

each sub-window W, we extract features based on optical
flow and blurriness following [10]. The optical flow descrip-
tor can both measure forward travel and effectively capture
the fast head movements that so often occur in ego-vision.
We compute dense optical flow for each couple of consec-
utive frames, using Farneback algorithm [5], obtaining the
relative apparent velocity of each pixel (Vx, Vy). These val-
ues can be expressed in polar coordinates (magnitudes and
orientations) as in the following:

M =
√
V 2
x + V 2

y θ = arctan(Vy/Vx) (4)

We quantize both the orientations and magnitudes into
eight bins. The final visual feature vector is then obtained
concatenating the magnitude and the orientation histograms,
where the latter is weighed by its magnitude.

To compute the blurriness descriptor we adopt the solu-
tion proposed by Roffet et al. [4], which evaluating the line
and row difference between the original image and the im-
age obtained applying to it a horizontal and a vertical strong
low-pass filter.

The visual motion feature vector, i.e. the concatenation
of the two visual descriptors, is used to compute the frame
window W descriptor applying an average pooling strategy
followed by a l2 normalization.

2.2 Bio-mechanical Sensor Feature
The bio-mechanical descriptor is composed by data ob-

tained from the accelerometer and the gyroscope. The raw
data consists of three values corresponding to the head ac-
celeration along x-axis, y-axis and z-axis expressed in m

s2
and

other three values that represent the orientations (azimuth,
pitch and roll) expressed in degree

sec
. However, classifiers are

demonstrated to perform poorly on raw sensor data and re-
quire a representation that captures the predominant char-

Figure 2: An example of raw data acquired from the x-axis
of an accelerometer over 25.000 frames.

acteristics that are intrinsic to this kind of data [9]. In fact,
Figure 2 shows a plot of the raw data obtained from the
x-axis of the accelerometer. It can be seen how, aside from
two peaks, no clear and discriminative information can be
directly inferred from such data. Therefore, for each win-
dow W we compute different features for both data sensors:
minimum and maximum values inside the window; mean
and standard deviation of acceleration and orientation val-
ues along the three axes; amount of zero-crossings inside the
window, that is the amount of changes in sign of the consid-
ered metric. The dimensionality of this descriptor can vary
depending on which of these features are considered and is
30− dimensional when all of them are employed together.

3. EXPERIMENTAL RESULTS
To thoroughly evaluate the proposed approach, we record

the novel dataset EGO-SENSORS. It was collected by using
glass-mounted device that consists of a tri-axial accelerome-
ter and a tri-axial gyroscope embedded in the EXLs1 sensor
node, a camera and an Odroid-XU developer board used as
data-processing and storage unit.
The developer board we use embeds the ARM Exynos 5
SoC, that hosts a Quad big.LITTLE ARM processor (Cor-
tex A15 and A7). Since the wearable camera acquires data
at 30 frames per second and the EXLs1 sensor streams at
100 Hz, we synchronize the two by sub-sampling the sen-
sor readings at 30 Hz as to have one reading per frame.
This dataset features 300,000 high quality egocentric frames,
each with a timestamp and its relative sensor reading. The
dataset is fully annotated with six different motion classes:
biking, jogging, running, standing, walking and wandering.
The dataset is composed of videos captured in unconstrained
real environments such as outdoor and indoor locations, cap-
tured by different people spanning various ages and in sig-
nificantly different timespan featuring both night and day
illumination conditions. Currently, there is no record of a
publicly available egocentric video collection provided with
accelerometer and gyroscope readings. Hence, being EGO-
SENSORS the first significant dataset tackling with this
problem, we publicly release it along with both the code1.

1http://imagelab.unimore.it/sensors
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Features Acc. Std Acc. Std
Blur + Optical Flow 0.724 0.017 0.741 0.015
A + G 0.762 0.054 0.921 0.009
Blur + A + G 0.792 0.059 0.909 0.009
Optical Flow + A + G 0.837 0.045 0.937 0.009
Blur + Opt. Flow + A + G 0.864 0.039 0.939 0.008

Table 1: Comparison of fusion strategies for different com-
binations of visual and bio-mechanical features. The first
column describes the type of feature used, where A: Ac-
celerometer, G: Gyroscope.

The experiments are conducted in an incremental way:
first, we evaluate the contribution of different sets of fea-
tures individually and then, the performance resulting from
their combination is evaluated. To highlight the contribu-
tion of our data fusion strategy, results are reported with
and without the use of our covariance descriptor, where
the latter concatenates the different feature vectors (com-
monly referred to as early fusion). The features considered
are: blur, optical flow, gyroscope and accelerometer informa-
tion. Table 1 reports the results of the described evaluation
in terms of classification accuracy and standard deviation.
These metrics are obtained from a cross validation with a
80− 20 ratio between training and testing data where each
test is repeated 100 times. All the experiments have been
performed fixing the window sizes to N = 4 and M = 40,
values identified with preliminary tests.

The table reports the contributions of different combina-
tion of visual and bio-mechanical descriptors. It can be
noticed how the combination of different sensors can out-
perform their stand-alone usage in both fusion strategies.
As expected, due to the unconstrained experimental setting
solely adopting visual features results in poor performance.
In fact, the table shows that the final feature vector that
combines both visual and sensor data achieves the best re-
sults. It also shows that our solution, based on a covari-
ance mapping, largely outperforms the standard early fusion
strategy in all types of feature combinations. For example
comparing the result of the final descriptor, we can observe
that the propose solution improves over the early fusion ap-
proach by more than 8%.

For a more detailed analysis of the motion segmentation
problem, we refer to the confusion matrices reported in Fig-
ure 3. In particular, Figure 3a reports the classification re-
sults using visual features in an early fusion fashion sim-
ilar to what proposed for ego-motion segmentation by Lu
et al. [10]. It can be seen how in this situation the class
walking has a low accuracy rating due to the low discrima-
tive capability of visual information to predict this particular
class. On the other hand, Figure 3b reports results obtained
using solely bio-mechanical features and shows a reduced
risk of misclassifiying walking thanks to motion classification
capabilities inherent of inertial sensors. Furthermore, the
opposite situation occurs when classifying biking sequences,
where visual information has better performance due to the
fact that part of the bicycle is often visible in the scene. This
shows the complementarity of the two information sources.

Considering the combination of features obtained from
both visual and bio-mechanical sources, Figures 3c and 3d
report the results obtained by using an early fusion approach

(a) Confusion matrix of the re-
sults obtained using visual fea-
tures in an early fusion fashion

(b) Confusion matrix of the re-
sults using bio-mechanical data
with an early fusion strategy

(c) Confusion matrix obtained
by merging visual and bio-
mechanical features through
early fusion

(d) Confusion matrix obtained
by merging visual and bio-
mechanical features through
our covariance descriptor

Figure 3: Confusion matrices of different features

(3c) and our covariance descriptor (3d). The Figures show
how, given our descriptors’ ability to capture the correlation
between heterogeneous features, it can significantly reduce
the error in the most ambiguous classes. For example, while
the jogging class is recognized with a 66% accuracy using an
early fusion strategy, our covariance descriptor can achieve
a relative improvement of 32%.

4. CONCLUSION
In this paper we presented a thorough analysis of the mul-

timodal acquisition capabilities of new egocentric wearable
devices. We demonstrated that the main feature traditional
computer vision focuses on, while providing a useful insight
on the motion patterns present in the scene, can greatly
benefit from the additional information resulting from bio-
mechanical sensors. In particular, we design a novel data
fusion strategy based on the projected covariance descrip-
tor, which can better capture relations between visual and
inertial information. Experimental results on a new and un-
constrained egocentric dataset show that, when compared
to the traditional early fusion strategy, our solution can im-
prove the overall performance and significantly lower the
error in the most ambiguous motion classes. Furthermore,
due to the novelty of the task at hand, this work contributes
to further research by releasing a real world unconstrained
dataset annotated with motion activities and featuring both
high quality video and bio-mechanical sensor readings.
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