We prove a global existence result for bounded solutions to a class of abstract semilinear delay evolution equations with measures subjected to nonlocal initial data of the form: du(t)={Au(t)+f(t,u t )}dt+dg(t) with t∈R+ and u(t)=h(u)(t) for t∈[−τ,0], with τ≥0. The operator A:D(A)⊆X→X is the infinitesimal generator of a C0 -semigroup, f:R+ ×R([−τ,0];X)→X is continuous, g∈BVloc (R+ ;X) and h:Rb (R + ;X)→R([−τ,0];X) is nonexpansive.

Semilinear delay evolution equations with measures subjected to nonlocal initial conditions / Benedetti, I.; Malaguti, Luisa; Taddei, Valentina; Vrabie, I. I.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - STAMPA. - 195:5(2016), pp. 1639-1658. [10.1007/s10231-015-0535-6]

Semilinear delay evolution equations with measures subjected to nonlocal initial conditions

MALAGUTI, Luisa;TADDEI, Valentina;
2016

Abstract

We prove a global existence result for bounded solutions to a class of abstract semilinear delay evolution equations with measures subjected to nonlocal initial data of the form: du(t)={Au(t)+f(t,u t )}dt+dg(t) with t∈R+ and u(t)=h(u)(t) for t∈[−τ,0], with τ≥0. The operator A:D(A)⊆X→X is the infinitesimal generator of a C0 -semigroup, f:R+ ×R([−τ,0];X)→X is continuous, g∈BVloc (R+ ;X) and h:Rb (R + ;X)→R([−τ,0];X) is nonexpansive.
2016
195
5
1639
1658
Semilinear delay evolution equations with measures subjected to nonlocal initial conditions / Benedetti, I.; Malaguti, Luisa; Taddei, Valentina; Vrabie, I. I.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - STAMPA. - 195:5(2016), pp. 1639-1658. [10.1007/s10231-015-0535-6]
Benedetti, I.; Malaguti, Luisa; Taddei, Valentina; Vrabie, I. I.
File in questo prodotto:
File Dimensione Formato  
Benedetti2016_Article_SemilinearDelayEvolutionEquati.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 505.54 kB
Formato Adobe PDF
505.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1082384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact