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Abstract We prove a global existence result for bounded solutions to a class of abstract
semilinear delay evolution equations with measures subjected to nonlocal initial data of the
form

{
du(t) = {Au(t) + f (t, ut )}dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ],
where τ ≥ 0, A : D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup,
f : R+ × R([−τ, 0 ]; X) → X is continuous, g ∈ BVloc(R+; X), and h : Rb(R+; X) →
R([−τ, 0 ]; X) is nonexpansive.
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1 Introduction

The goal of this paper is to prove some sufficient conditions for the global existence and
boundedness of L∞-solutions for the nonlocal initial problem with measures:

{
du(t) = {Au(t) + f (t, ut )}dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ]. (1)

Here τ ≥ 0, A generates a C0-semigroup of contractions, {S(t) : X → X; t ≥ 0}, in a real
Banach space X , f : R+×R([−τ, 0 ]; X) → X , g ∈ BVloc(R+; X), and h : Rb(R+; X) →
R([−τ, 0 ]; X) is nonexpansive.

If I is an interval, we denote by R(I ; X) the space of all piecewise continuous functions
from I to X , i.e., the space of all functions having only discontinuities of the first kind.
Further, we denote by Rb(I ; X) the space of all bounded functions belonging to R(I ; X).

We notice that, equipped with the uniform convergence on compact intervals topol-
ogy, R(I ; X) is a separated, locally convex space. Moreover, endowed with the sup-norm,
Rb(I ; X) is a real Banach space. If I is a compact interval, each function u ∈ Rb(I ; X)

is automatically bounded, and thus, the space Rb(I ; X) coincides with R(I ; X). If u ∈
Rb([−τ,+∞); X) and t ∈ R+, we denote by ut the function from [−τ, 0 ] to X , defined
by

ut (s) := u(t + s)

for each s ∈ [−τ, 0 ]. Clearly ut ∈ R([−τ, 0 ]; X) and the mapping t �→ ut belongs to
R(R+;R([−τ, 0 ]; X)). For fundamental results on delay equations, see Hale [19].

For delay problems subjected to usual local initial conditions, see the bookofHale [19]. See
also Mitidieri and Vrabie [20]. In the specific case where τ = 0 and h(u) := ξ , the problem
above was studied by Ahmed [1], Amann [2], Grosu [18] and Vrabie [28,29], Benedetti and
Rubbioni [7]. We notice that such kind of equations arise in the study of optimal control
problems with state constraints. See Barbu and Precupanu [4]. Problem (1) without delay
and subjected to a usual initial condition was studied by Vrabie [28, Theorem 8.1] and [29,
Theorem 12.2.2, p. 275]. Some extensions to the case in which g may depend on u as well
were obtained later by Grosu [18].

As far as nondelay evolution equations subjected to nonlocal initial conditions are
concerned, we mention the pioneering works of Byszewski [13,14] and Byszewski and Lak-
shmikantham [15]. More recent results in this topic are due to Benedetti, Loi and Malaguti
[5], Benedetti, Malaguti and Taddei [6], Benedetti, Taddei and Väth [8], García-Falset and
Reich [17] and Paicu and Vrabie [23]. For delay evolution equations and inclusions with
nonlocal conditions, see Burlică and Roşu [10,11], Necula, Popescu and Vrabie [21], Necula
and Vrabie [22], Vrabie [30–33].

The main difficulty occurring in the study of nonlocal initial problems consists in the lack
of the semigroup property. More precisely, in this general case, we cannot proceed as in the
case of initial local conditions when we prove first a local existence result, and then, under
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some appropriate hypotheses, by using Zorn’s Lemma or one of its weaker variants as, for
instance, the Brezis–Browder Ordering Principle [9], we can obtain noncontinuable or even
global solutions. By contrary, in this frame, we are forced to solve the problem of global
existence directly. So, one may easily realize why this requires some apparently stronger
hypotheses than in the classical case of local initial conditions. Wemean here the assumption
that A generates a semigroup, {S(t) : D(A) → D(A); t ≥ 0}, decaying exponentially to 0
when t tends to+∞ and dominates f , i.e., � < ω, where � > 0 is the Lipschitz constant of f
with respect to its second argument, whileω > 0 satisfies ‖S(t)ξ‖ ≤ e−ωt‖ξ‖ for each t > 0
and ξ ∈ D(A). It is well known that, in the case of initial-value problems, this condition
usually ensures the global asymptotic stability of solutions and it is not needed for local or
even global existence.

The paper is divided into seven sections. For the sake of clarity, in Sect. 2 we have included
some background material on the existence and regularity of L∞-solutions and we recall the
main compactness arguments we are going to use later on. In Sect. 3, we state the main result
and a consequence referring to the nondelay case which also is new. In Sect. 4, we prove
some particular cases referring either to local initial-value problems or even to nonlocal
initial-value problems for which the history function is a strict contraction. Section 5 is
devoted to an auxiliary global existence, uniqueness and boundedness result. In Sect. 6, we
prove our main result, while Sect. 7 presents an application to a delay parabolic problem
subjected to nonlocal initial conditions.

2 Preliminaries

For easy reference, we begin by recalling some results established in Vrabie [28] and [29].
Let D[ 0, T ] be the set of all partitions of the interval [ 0, T ]. If g : [ 0, T ] → X , then

for each Δ ∈ D[ 0, T ], Δ : 0 = t0 < t1 < · · · < tk = T , and the number

V arΔ(g, [ 0, T ]) =
k−1∑
i=0

‖g(ti+1) − g(ti )‖

is called the variation of the function g relative to the partition Δ. If

sup
Δ∈D[ 0,T ]

V arΔ(g, [ 0, T ]) < ∞,

then g is said to be of bounded variation, and the number

V ar(g, [ 0, T ]) = sup
Δ∈D[ 0,T ]

V arΔ(g, [ 0, T ])

is called the variation of the function g on the interval [ 0, T ]. We denote by BV ([ 0, T ]; X)

the space of all functions of bounded variation from [ 0, T ] to X . Endowed with the norm

‖g‖ := ‖g(0)‖ + V ar(g, [ 0, T ])
for each g ∈ BV ([ 0, T ]; X), this is a real Banach space. We also denote by BV loc(R+; X)

the space of all functions u : R+ → X with u ∈ BV ([0, T ]; X) for each T > 0.
Let {S(t) : X → X; t ≥ 0} be a C0-semigroup. We say that it is compact if S(t) is a

compact operator for each t > 0. Basic facts on C0-semigroups we need in this paper can be
found in Pazy [24] and Vrabie [29].
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Let t ∈ (0, T ], Δ : 0 = t0 < t1 < · · · < tk = t and let τi ∈ [ti , ti+1], for i =
0, 1, · · · , k −1. Let us consider the Riemann–Stieltjes sum of τ → S(t − τ) over [ 0, t ] with
respect to g, i.e.,

σ[ 0,t ](Δ, S, g, τi ) =
k−1∑
i=0

S(t − τi )(g(ti+1) − g(ti )).

If Δ ∈ D[ 0, t ], we denote by μ(Δ) = max
i=0,1,...k−1

(ti+1 − ti ).

Theorem 1 If {S(t) : X → X; t ≥ 0} is continuous from (0,+∞) to L(X) in the uniform
operator topology, then, for each g ∈ BV ([ 0, T ]; X) and t ∈ (0, T ], the limit

∫ t

0
S(t − s)dg(s) = lim

μ(Δ)↓0

k−1∑
i=0

S(t − τi )(g(ti+1) − g(ti )) (2)

exists in the norm topology of X.

See Vrabie [28, Theorem 2.1] or Vrabie [29, Theorem 9.1.1, p. 208].
For more details on the integral in (2)—called the Riemann–Stieltjes integral of s �→

S(t − s) with respect to g —see Vrabie [29, Chapter 9, pp. 205–222]. A different approach

to defining
∫ t

0
S(t − s)dg(s) is due to Amann [2] who considered only the case of analytic

C0-semigroups.
Next, let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-semigroup of

contractions {S(t) : X → X; t ≥ 0}, ξ ∈ X and g ∈ BV ([ 0, T ]; X). Let us consider the
nonhomogeneous Cauchy problem with measures:{

du(t) = [Au(t)]dt + dg(t), t ∈ [ 0, T ]
u(0) = ξ.

(3)

Definition 1 A function u : [ 0, T ] → X is called anL∞-solution on [ 0, T ] of the Problem
(3) if

u(t) = S(t)ξ +
∫ t

0
S(t − s)dg(s)

for each t ∈ [ 0, T ], where the integral on the left-hand side is defined by (2).
If g ∈ BV loc(R+; X), the function u : R+ → X is called an L∞-solution on R+ if for

each T > 0 u is an L∞-solution on [ 0, T ] of the Problem (3) in the sense specified above.

See Vrabie [28, Definition 2.1].

Theorem 2 (Regularity of L∞-solutions) Let A : D(A) ⊆ X → X be the infinitesimal
generator of a C0-semigroup of contractions {S(t) : X → X; t ≥ 0} which is continuous
from (0,+∞) to L(X) in the uniform operator topology. Let ξ ∈ X, g ∈ BV loc(R+; X) and
let u be the L∞-solution of (3) corresponding to ξ and g. Then, for each t ∈ R+ and each
s ∈ (0,+∞), we have: {

u(t + 0) − u(t) = g(t + 0) − g(t),

u(s) − u(s − 0) = g(s) − g(s − 0).

So, in this case, u is continuous from the right (left) at t ∈ R+ if and only if g is continuous
from the right (left) at t . In particular, u is continuous at any point at which g is continuous,
and thus, u is piecewise continuous on R+.
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See Vrabie [28, Theorem 3.1] or Vrabie [29, Theorem 9.2.1, p. 210] .

Remark 1 We notice that each L∞-solution u satisfies

‖u(t)‖ ≤ ‖S(t)‖‖ξ‖ +
∫ t

0
‖S(t − s)‖dV ar(g, [ 0, s ]),

for each T > 0 and t ∈ [ 0, T ].
Theorem 3 (Tychonoff) Let X be a separated locally convex topological vector space and
let K be a nonempty, convex and closed subset in X . If Q : K → K is continuous and Q(K )

is relatively compact, then it has at least one fixed point, i.e., there exists ξ ∈ K such that
Q(ξ) = ξ .

See Tychonoff [25] or Edwards [16, Theorem 3.6.1, 161].
Throughout, for each ξ ∈ X and f ∈ L1(0, T ; X), we will denote u := M(ξ, f ), the

mild, or L∞-solution of the problem{
u′(t) = Au(t) + f (t), t ∈ [ 0, T ],
u(0) = ξ.

i.e., the function u : [ 0, T ] → X , defined by

u(t) = S(t)ξ +
∫ t

0
S(t − s) f (s) ds

for each t ∈ [ 0, T ].
A set F ⊆ L1(0, T ; X) is called uniformly integrable if for each ε > 0 there exists

δ(ε) > 0 such that, for each E ⊆ [ 0, T ] whose Lebesgue measure satisfies μ(E) ≤ δ(ε),
we have ∫

E
‖ f (t)‖ dt ≤ ε,

uniformly for f ∈ F .

Theorem 4 (Baras–Hassan–Veron) Let A : D(A) ⊆ X → X be the generator of a compact
C0-semigroup, let D ⊂ X be a bounded subset, and let F be a uniformly integrable subset in
L1(0, T ; X). ThenM(D,F) is relatively compact in C([ δ, T ]; X) for each δ ∈ (0, T ). If, in
addition, D is relatively compact, thenM(D,F) is relatively compact even in C([ 0, T ]; X).

See Baras et al. [3] or Vrabie [29, Theorem 8.4.2, p. 196]. Some extensions of this result
to the case in which A : D(A) ⊆ X → X is a nonlinear m-dissipative operator can be found
in Vrabie [27, Theorem 2.3.3, p. 47] and Vrabie [26].

3 A global existence theorem

Let X be a real Banach space, A : D(A) ⊆ X → X the infinitesimal generator of a C0-
semigroup {S(t) : X → X; t ≥ 0}, let ξ ∈ X , let g ∈ BVloc(R+; X) be a given function,
and let h : Rb(R+; X) → R([−τ, 0 ]; X) be a nonexpansive function. Let us consider the
Cauchy problem:{

du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ]. (4)
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By an L∞-solution of the Problem (4), we mean a piecewise continuous function u :
[ −τ,+∞) → X satisfying

u(t) =
⎧⎨
⎩

h(u)(t), t ∈ [−τ, 0 ],
S(t)h(u)(0) +

∫ t

0
S(t − s) f (s, us) ds +

∫ t

0
S(t − s)dg(s), t ∈ R+.

Remark 2 One may easily see that an L∞-solution of the Problem (4) is a function ũ :
[ −τ,+∞) → X ,

ũ(t) :=
{

h(u)(t), t ∈ [−τ, 0 ],
u(t), t ∈ R+,

where, for each T > 0, u is anL∞-solution in the sense of Definition 1 of the problem below{
du(t) = [Au(t)]dt + dg̃(t), t ∈ [ 0, T ],
u(0) = h(u)(0),

where

g̃(t) := g(t) +
∫ t

0
f (s, us) ds

for each t ∈ [ 0, T ].
For the sake of simplicity, we confine ourselves to the case of C0-semigroups of contrac-

tions although our results can be extended to general C0-semigroups. More precisely, we will
use the following general hypotheses:

(HA) A : D(A) ⊆ X → X generates a C0-semigroup on X satisfying:

(A1) ‖S(t)‖ ≤ e−ωt for each t ∈ R+;
(A2) the semigroup {S(t) : X → X; t ≥ 0} is compact.

(H f ) f : R+ × R([−τ, 0 ]; X) → X is continuous and satisfies:

( f1) there exist � > 0 and m ≥ 0 such that ‖ f (t, u)‖ ≤ �‖u‖R([−τ,0 ];X) + m for
each t ∈ R+ and u ∈ R([−τ, 0 ]; X);
( f2) with � > 0 given by ( f1), we have

‖ f (t, u) − f (t, v)‖ ≤ �‖u − v‖R([−τ,0 ];X)

for each t ∈ R+ and each u, v ∈ R([−τ, 0 ]; X).

(Hg) The function g ∈ BV loc(R+; X), and there exists m1 > 0 such that
∫ t

0
eωsdVar (g, [ 0, s ]) ≤ m1

for each t ∈ R+.
(Hh)The restriction of the function h : Rb(R+; X) → R([−τ, 0 ]; X) on every bounded
subset in Rb(R+; X) is continuous with respect to the induced locally convex topology
of R(R+; X) to R([−τ, 0 ]; X) and there exists a > 0 such that

‖h(u) − h(v)‖R([ −τ,0 ];X) ≤ ‖u − v‖Rb([ a,+∞);X)

for each u, v ∈ Rb(R+; X).
(Hc) The constants � and ω satisfy � < ω.

123



Semilinear delay evolution equations with measures subjected… 1645

Remark 3 Let {S(t) : X → X; t ≥ 0} be a C0-semigroup continuous on (0,+∞) in the
uniform operator topology, satisfying (A1) in (HA). Let g ∈ BV loc(R+; X) be a function
satisfying (Hg). Then ∥∥∥∥

∫ t

0
S(t − s)dg(s)

∥∥∥∥ ≤ e−ωt m1

for each t ∈ R+. Indeed,∥∥∥∥
∫ t

0
S(t − s)dg(s)

∥∥∥∥ ≤ e−ωt
∫ t

0
eωsdVar (g, [ 0, s ]) ≤ e−ωt m1,

as claimed.

Our main result is:

Theorem 5 Let us assume that (HA), (H f ), (Hg) (Hh) and (Hc) are satisfied. Then, the
Problem (1) has at least one L∞-solution u ∈ Rb([−τ,+∞); X).

As far as the nondelay case is concerned, let us observe first that, for τ = 0,R([−τ, 0 ]; X)

reduces to X and, for eachu ∈ Rb(R+; X) and t ∈ R+,ut = u(t). So theProblem (4) rewrites
as: {

du(t) = [Au(t) + f (t, u(t))] dt + dg(t), t ∈ R+,

u(0) = h(u).
(5)

So, in this specific case, the hypotheses (H f ) and (Hh) take the form:

(H [ τ=0 ]
f ) f : R+ × X → X is continuous and satisfies:

( f [ τ=0 ]
1 ) there exist � > 0 and m ≥ 0 such that ‖ f (t, u)‖ ≤ �‖u‖ + m for each

t ∈ R+ and u ∈ X ;
( f [ τ=0 ]

2 ) with � > 0 given by ( f1), we have

‖ f (t, u) − f (t, v)‖ ≤ �‖u − v‖
for each t ∈ R+ and each u, v ∈ X .

(H [ τ=0 ]
h ) The restriction of the function h : Rb(R+; X) → X is continuous on every

bounded subset in Rb(R+; X) with respect to the induced locally convex topology of
R(R+; X) to X and there exists a > 0 such that

‖h(u) − h(v)‖ ≤ ‖u − v‖Rb([ a,+∞);X)

for each u, v ∈ Rb(R+; X).

and from Theorem 5, we deduce

Theorem 6 Let us assume that (HA), (H [ τ=0 ]
f ), (Hg) (H [ τ=0 ]

h ) and (Hc) are satisfied.
Then, the Problem (5) has at least one L∞-solution u ∈ Rb(R+; X).

Remark 4 We notice that the nonlocal initial condition contains as particular cases:

(i) The periodic condition u(0) = u(T ) which corresponds to the choice of h as h(u) :=
u(T );

(ii) The anti-periodic condition u(0) = −u(T ) which corresponds to the choice of h as
h(u) := −u(T );
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(iii) The mean condition

u(0) =
∞∑

i=1

αi u(ti ),

where 0 < t1 < t2 < · · · < tn < · · · and α ∈ R satisfy

∞∑
i=1

αi ≤ 1,

which corresponds to the choice of h as

h(u) :=
∞∑

i=1

αi u(ti ).

A similar remark applies to the general delay case.

4 Preliminary results

For the sake of simplicity, we divide the proof of Theorem 5 into several steps, the first one
being the following lemmawhich is generalization, in the semilinear case, to delay evolutions
with measures, of a result in Vrabie [31, Lemma 4.3].

Lemma 1 Let us assume that (HA), (H f ), (Hg) and (Hc) are satisfied. Then, for each
ϕ ∈ R([−τ, 0 ]; X), the problem{

du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = ϕ(t), t ∈ [−τ, 0 ], (6)

has a unique L∞-solution u ∈ Rb([−τ,+∞); X).

Proof Let v ∈ Rb([−τ,+∞); X). Since, by (A2) of (HA), the C0-semigroup generated by
A is compact, it is continuous on (0,+∞) in the uniform operator topology. So, Theorem 1
applies and we can define the function u : R+ → X by

u(t) := S(t)ϕ(0) +
∫ t

0
S(t − s) f (s, vs) ds +

∫ t

0
S(t − s)dg(s),

for each t ∈ R+. By ( f1) in (H f ), (Hg) and Theorem 2, it follows that the function u belongs
to Rb([−τ,+∞); X).

We will show first that u is bounded. Indeed, if t ≥ 0, thanks to (HA), (H f ), (Hg) and
Remark 3, we deduce

‖u(t)‖ ≤ e−ωt‖ϕ(0)‖ + �

[∫ t

0
e−ω(t−s)

(
‖vs‖R([ −τ,0 ];X) + m

�

)]
ds + e−ωt m1

and thus

‖u(t)‖ ≤ e−ωt‖ϕ‖R([−τ,0 ];X) + (1 − e−ωt )
�

ω

[
‖v‖Rb([−τ,+∞);X) + m

�

]
+ e−ωt m1,

for each t ∈ R+. Therefore, u belongs to Rb([−τ,+∞); X).
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So, the operator

Q : Rb([−τ,+∞); X) → Rb([−τ,+∞); X),

Q(v)(t) =
⎧⎨
⎩

ϕ(t), t ∈ [−τ, 0 ],
S(t)ϕ(0) +

∫ t

0
S(t − s) f (s, vs) ds +

∫ t

0
S(t − s)dg(s), t ∈ R+

(7)

is well defined. Clearly (6) has a unique L∞-solution if and only if the operator Q has a
unique fixed point.

Let v,w ∈ Rb([−τ,+∞); X) and let us observe that

‖Q(v)(t) − Q(w)(t)‖ ≤ �

∫ t

0
e−ω(t−s)‖vs − ws‖R([ −τ,0 ];X) ds

≤ �

ω

(
1 − e−ωt ) ‖v − w‖Rb([−τ,+∞);X)

≤ �

ω
‖v − w‖Rb([−τ,+∞);X)

for each t ∈ R+.
Since

‖Q(v) − Q(w)‖R([−τ,0 ];X) = ‖ϕ − ϕ‖R([−τ,0 ];X) = 0,

it follows that

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = ‖Q(v) − Q(w)‖Rb(R+;X).

So, we get

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) ≤ �

ω
‖v − w‖Rb([−τ,+∞);X).

Consequently, by (Hc), Q is strict contraction onRb([−τ,+∞); X), and by Banach’s fixed
point theorem, it has a unique fixed point u. The proof is complete. 
�
Theorem 7 Let us assume that (HA), ( f1) in (H f ), (Hg) and (Hc) are satisfied. Then, for
each ϕ ∈ R([−τ, 0 ]; X), the problem{

du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = ϕ(t), t ∈ [−τ, 0 ], (8)

has at least one L∞-solution u ∈ Rb([−τ,+∞); X).

Proof We define the operator Q by (7), and we observe that (8) has at least one L∞-solution
if and only if Q has at least one fixed point.

We will show that, for a suitably chosen r > 0, Q maps the closed ball with center 0
and radius r inRb(R+; X), denoted by B(0, r), into itself, is continuous and compact in the
locally convex topology of R(R+; X) on both domain and range.

Let v ∈ Rb([−τ,+∞); X). By Remark 1, Remark 3, (A1) in (HA), ( f1) in (H f ) and
(Hg), we conclude that Q(v), defined by (7), satisfies

‖Q(v)(t)‖ ≤ e−ωt‖ϕ(0)‖ + �

∫ t

0
e−ω(t−s)

(
‖vs‖R([−τ,0 ];X) + m

�

)
ds + e−ωt m1

≤ e−ωt‖ϕ‖R([−τ,0 ];X)+�

∫ t

0
e−ω(t−s)

(
‖v‖Rb([ −τ,+∞);X) + m

�

)
ds+e−ωt m1
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1648 I. Benedetti et al.

for each t ∈ R+. Hence, if r > 0 and

‖v‖Rb([ −τ,+∞);X) ≤ r,

we get

‖Q(v)(t)‖ ≤ e−ωt‖ϕ‖R([−τ,0 ];X) + �

ω
(1 − e−ωt )

(
r + m

�

)
+ e−ωt m1

for each t ∈ R+. Thus

‖Q(v)(t)‖ ≤ ‖ϕ‖R([−τ,0 ];X) + �

ω

(
r + m

�

)
+ m1

for each t ∈ R+. Next, let us fix r > 0 satisfying

‖ϕ‖R([−τ,0 ];X) + �

ω

(
r + m

�

)
+ m1 ≤ r (9)

which is always possible because, by (Hc), � < ω.
So, if r > 0 is as above and v ∈ B(0, r), by (9), we get

‖Q(v)‖Rb([ −τ,+∞);X) = max
{‖Q(v)‖R([−τ,0 ];X), ‖Q(v)‖Rb(R+;X)

}
= max

{‖ϕ‖R([−τ,0 ];X), r
} = r

which shows that Q maps B(0, r) into itself. It is easy to observe that B(0, r) is closed in
R([−τ,+∞); X) being closed in Rb([−τ,+∞); X).

Wewill prove next that Q is continuous from B(0, r) into itselfwith respect to the topology
ofR([−τ,+∞); X) on both domain and range. To this aim, let (vn)n be a sequence in B(0, r)

and v ∈ B(0, r) with
lim

n
vn = v (10)

in R([−τ,+∞); X), i.e., uniformly on compact subsets in [−τ,+∞). We have

‖Q(vn)(t) − Q(v)(t)‖ ≤
∫ t

0
e−ω(t−s)‖ f (s, vns) − f (s, vs)‖ ds

for each n ∈ N, each p ∈ N and each t ∈ [ 0, p ]. From (10), we conclude that

lim
n

vns = vs

for each s ∈ R+. Since f is continuous and satisfies ( f1) in (H f ), an appeal to Lebesgue’s
dominated convergence theorem shows that

lim
n

Q(vn) = Q(v)

uniformly on [ 0, p ], for each p ∈ N. So, Q is continuous from B(0, r) into itself with
respect to the topology of R([−τ,+∞); X) on both domain and range.

Finally, we will show that Q(B(0, r)) is relatively compact in R([−τ,+∞); X). Let
p ∈ N be arbitrary and let us observe that, by ( f1) in (H f ), the set

{s �→ f (s, vs); v ∈ B(0, r)}
is uniformly bounded and thus uniformly integrable on [ 0, p ]. As by (A2) in (HA), the
C0-semigroup generated by A is compact, we are in the hypotheses of Baras, Hassan and
Veron Theorem 4, wherefrom it follows that, for each p ∈ N, the family of functions

F :=
{

t �→ S(t)ϕ(0) +
∫ t

0
S(t − s) f (s, vs) ds; v ∈ B(0, r)

}
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is relatively compact in C([ 0, p ]; X). Consequently, for each p ∈ N,

Q(B(0, r)) =
⎧⎨
⎩

F +
{

t �→
∫ t

0
S(t − s)dg(s)

}
, t ∈ R+

{t �→ ϕ(t)}, t ∈ [−τ, 0 ]
is relatively compact in R([−τ, p ]; X) or, equivalently, in R([−τ,+∞); X). By
Tychonoff’s fixed point Theorem 3, it follows that Q has at least one fixed point u ∈ B(0, r),
which clearly is an L∞-solution of the Problem (8) as claimed. 
�
Theorem 8 Let us assume that (HA), (H f ), (Hg), (Hh) and (Hc) are satisfied and, in
addition, h is a strict contraction. Then the problem{

du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ], (11)

has a unique L∞-solution u ∈ Rb([−τ,+∞); X).

Proof Let v ∈ Rb([−τ,+∞); X) and let us consider the problem{
du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = h(v)(t), t ∈ [−τ, 0 ]. (12)

By Lemma 1, the Problem (12) has a unique L∞-solution u ∈ Rb([−τ,+∞); X). So, we
can define the operator

Q : Rb([−τ,+∞); X) → Rb([−τ,+∞); X),

defined by

Q(v) := u,

where u is the unique L∞-solution of (12), i.e.,

u(t) =
⎧⎨
⎩

h(v)(t), t ∈ [−τ, 0 ],
S(t)h(v)(0) +

∫ t

0
S(t − s) f (s, us) ds +

∫ t

0
S(t − s)dg(s), t ∈ R+.

At this point, let us observe that Q(u) = u if and only if u is an L∞-solution of the
Problem (11). Thus, to complete the proof, it suffices to show that Q has a unique fixed point
in Rb([−τ,+∞); X). To this aim, we will show that Q is a strict contraction of constant
k ∈ (0, 1), where k is the Lipschitz constant of h. Let v,w ∈ Rb([−τ,+∞); X) and let us
observe that, by ( f1) in (H f ), we have

‖Q(v)(t) − Q(w)(t)‖ ≤ e−ωt‖Q(v)(0) − Q(w)(0)‖
+�

∫ t

0
e−ω(t−s)‖[Q(v)]s − [Q(w)]s‖R([−τ,0 ];X) ds

≤ e−ωt‖Q(v) − Q(w)‖Rb([−τ,+∞);X)

+ �

ω

(
1 − e−ωt ) ‖Q(v) − Q(w)‖Rb([−τ,+∞);X)

for each t ∈ R+. We distinguish between (noncomplementary) cases.
Case 1. If there exists t0 > 0 such that

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = lim sup
t→t0

‖Q(v)(t) − Q(w)(t)‖,
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then passing to the lim sup in the last inequality, we obtain(
1 − e−ωt0

) ‖Q(v) − Q(w)‖Rb([−τ,+∞);X)

≤ �

ω

(
1 − e−ωt0

) ‖Q(v) − Q(w)‖Rb([ −τ,+∞);X)

which shows that

‖Q(v) − Q(w)‖Rb([ −τ,+∞);X) = 0.

Case 2. If there exists t0 ∈ [−τ, 0 ] such that
‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = lim sup

t→t0
‖Q(v)(t) − Q(w)(t)‖,

then

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = ‖Q(v) − Q(w)‖R([−τ,0 ];X),

and so, by (Hh), we obtain

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) ≤ k‖v − w‖Rb([ a,+∞);X) ≤ k‖v − w‖Rb([−τ,+∞);X).

We notice that if t0 = 0 and

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = lim sup
t↓0

‖Q(v)(t) − Q(w)(t)‖,

then we can pass to the limit directly in the inequality preceding Case 1 to get the same
conclusion as above.
Case 3. If

‖Q(v) − Q(w)‖Rb([−τ,+∞);X) = lim sup
t→+∞

‖Q(v)(t) − Q(w)(t)‖,

then reasoning as in Case 1, we deduce that

‖Q(v) − Q(w)‖Rb([ −τ,+∞);X) = 0.

So, Q is a strict contraction and this completes the proof. 
�

5 An auxiliary lemma

We need the following extension of a result in Burlică and Roşu [12, Lemma 4.1, for-
mula (4.3)] valid for continuous functions.

Lemma 2 Let us assume that (HA), (Hh), (Hg) and (Hc) are satisfied. Then, for each
f ∈ L∞(R+; X), the problem{

du(t) = [Au(t) + f (t)]dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ] (13)

has a unique L∞-solution u ∈ Rb([−τ,+∞); X) satisfying

‖u‖Rb(R+;X) ≤ eωa

eωa − 1
m2 + 1

ω
‖ f ‖L∞(R+;X), (14)

where m2 := m0 + m1, m0 = ‖h(0)‖R([ −τ,0 ];X) and m1 is given by (Hg).
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Proof Let f ∈ L∞(R+; X) be arbitrary but fixed. Let w ∈ Rb([−τ,+∞); X) and let us
consider the auxiliary problem{

du(t) = [Au(t) + f (t)]dt + dg(t), t ∈ R+,

u(t) = h(w)(t), t ∈ [−τ, 0 ]. (15)

Reasoning as in Lemma 5 with f (t, ut ) replaced by f (t), it follows that (15) has a unique
L∞-solution u ∈ Rb([−τ,+∞); X) satisfying

‖u(t)‖ ≤ e−ωt [‖w‖Rb([ a,+∞);X) + m2
] + (

1 − e−ωt ) 1

ω
‖ f ‖L∞(R+;X). (16)

Thus, we can define the operator

T : Rb([−τ,+∞); X) → Rb([−τ,+∞); X)

by

T (w) = u,

where u ∈ Rb([−τ,+∞); X) is the unique L∞-solution of the Problem (15). Obviously,
(15) has a unique L∞-solution if and only if T has a unique fixed point.

Then, to complete the proof, it suffices to show that T 2 is a strict contraction. The idea
below goes back to Vrabie [30]. Here, we follow the arguments in Burlică and Roşu [10]
slightly modified to handle the case of L∞-solutions which may fail to be continuous. So,
let w, z ∈ Rb([−τ,+∞); X). We have

‖T w − T z‖Rb([ a,+∞);X) ≤ e−ωa‖w − z‖Rb([ a,+∞);X). (17)

Indeed, if t ≥ a using (Hh), we obtain

‖(T w)(t) − (T z)(t)‖ ≤ e−ωt‖h(w)(0) − h(z)(0)‖
≤ e−ωt‖h(w) − h(z)‖R([ −τ,0 ];X)

≤ e−ωa‖w − z‖Rb([ a,+∞);X).

Now we prove that

‖T 2w − T 2z‖Rb([ −τ,+∞);X) ≤ e−ωa‖w − z‖Rb([−τ,+∞);X). (18)

First, let t ≥ 0. By (Hh) and (17), we have

‖(T 2w)(t) − (T 2z)(t)‖ ≤ e−ωt‖(h(T w))(0) − (h(T z))(0)‖
≤ e−ωt‖h(T w) − h(T z)‖R([ −τ,0 ];X)

≤ ‖T w − T z‖Rb([ a,+∞);X)

≤ e−ωa‖w − z‖Rb([ a,+∞);X)

≤ e−ωa‖w − z‖Rb([ −τ,+∞);X).

Second, if t ∈ [−τ, 0 ), using the same inequalities, i.e., (Hh) and (17), we get

‖(T 2w)(t) − (T 2z)(t)‖ = ‖(h(T w))(t) − (h(T z))(t)‖
≤ ‖h(T w) − h(T z)‖R([ −τ,0 ];X)

≤ ‖T w − T z‖Rb([ a,+∞);X)

≤ e−ωa‖w − z‖Rb([ −τ,+∞);X).
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Thus, for each t ∈ [−τ,+∞), we have

‖(T 2w)(t) − (T 2z)(t)‖ ≤ e−ωa‖w − z‖Rb([−τ,+∞);X)

which implies (18). But (18) shows that T 2 is a contraction of constant e−ωa . So T 2 has a
unique fixed point u which is also a fixed point of T . Indeed, we have

‖T u − u‖Rb([ a,+∞);X) = ‖T 3u − T 2u‖Rb([ a,+∞);X) ≤ e−ωa‖T u − u‖Rb([ a,+∞);X)

for each t ∈ [−τ,+∞). Since e−ωa < 1, this inequality shows that T u = u and so u is a
fixed point of T which clearly is unique and is an L∞-solution of the Problem (13).

This completes the proof of the existence and uniqueness part.
Finally, we will estimate ‖u(t)‖ for t ∈ [−τ, 0 ] and for t ∈ (0,+∞) separately. For

t ∈ [−τ, 0 ], using (Hh), we get

‖u(t)‖ = ‖h(u)(t)‖ ≤ ‖u‖Rb([ a,+∞);X) + m0.

On the other hand, from (16), setting w = u, we have

‖u(t)‖ ≤ e−ωt‖u‖Rb([ a,+∞);X) + e−ωt m2 + (1 − e−ωt )
1

ω
‖ f ‖L∞(R+;X) (19)

for each t > 0. So, if for some t ≥ a, we have

lim sup
s→t

‖u(s)‖ = ‖u‖Rb([ a,+∞);X),

then, from the last inequality, by observing that the function x �→ 1

eωx − 1
is strictly decreas-

ing on [ a,+∞), we deduce

‖u‖Rb([ a,+∞);X) ≤ m2

eωa − 1
+ 1

ω
‖ f ‖L∞(R+;X). (20)

If for each t ≥ a we have lim sups→t ‖u(s)‖ < ‖u‖Rb([ a,+∞);X), then there exists tn → ∞
such that

lim
n→∞ ‖u(tn)‖ = ‖u‖Rb([ a,+∞);X).

Setting t = tn in (19) and passing to the limit for n → +∞, we get

‖u‖Rb([ a,+∞);X) ≤ 1

ω
‖ f ‖L∞(R+;X).

So, in any case, (20) holds true.
Taking w = u in (16) and using (20), we obtain

‖u(t)‖ ≤ e−ωt
(

m2

eωa − 1
+ 1

ω
‖ f ‖L∞(R+;X) + m2

)
+ (1 − e−ωt )

1

ω
‖ f ‖L∞(R+;X)

for each t ∈ R+. After some obvious rearrangements, we get (14) and this completes the
proof. 
�
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6 Proof of the main result

Proof Let ε ∈ (0, 1) and let us consider the approximate problem
{
du(t) = [Au(t) + f (t, ut )] dt + dg(t), t ∈ R+,

u(t) = (1 − ε)h(u)(t), t ∈ [−τ, 0 ]. (21)

By Theorem 8, (21) has a unique L∞-solution uε ∈ Rb([−τ,+∞); X). We will show first
that the L∞-solution set {uε; ε ∈ (0, 1)} is uniformly bounded on [−τ,+∞). To this aim,
let us observe that, by (14) in Lemma 2 and ( f1) in (H f ), we have

‖uε‖Rb(R+;X) ≤ eωa

eωa − 1
m2 + �

ω
‖uε‖Rb([−τ,+∞);X) + m

ω
. (22)

Let E ⊆ (0, 1) and F ⊆ (0, 1) be defined by

E := {
ε ∈ (0, 1); ‖uε‖Rb(R+;X) = ‖uε‖Rb([ −τ,+∞);X)

}
and by

F := {
ε ∈ (0, 1); ‖uε‖R([ −τ,0 ];X) = ‖uε‖Rb([−τ,+∞);X)

}
,

respectively.
Clearly the set

{‖uε‖Rb([−τ,+∞);X); ε ∈ E
}

is bounded. Indeed, if we assume the contrary, from (22), we get ω ≤ � which is a contra-
diction.

Also the set
{‖uε‖Rb([ −τ,+∞);X); ε ∈ F

}
is bounded. Indeed, if ε ∈ F , from (22) and (Hh), we get

‖uε(t)‖ ≤ ‖uε‖Rb([ a,+∞);X) + m0 ≤ eωa

eωa − 1
m2 + �

ω
‖uε‖R([−τ,0 ];X) + m

ω
+ m0

for each t ∈ [−τ, 0 ]. So,

‖uε‖R([−τ,0 ];X) ≤ eωa

eωa − 1
m2 + �

ω
‖uε‖R([−τ,0 ];X) + m

ω
+ m0

which shows that the set
{‖uε‖R([−τ,0 ];X); ε ∈ F

} = {‖uε‖Rb([−τ,+∞);X); ε ∈ F
}

is bounded.
From the arguments above, it readily follows that, for each sequence εn ↓ 0, the set

{un; n ∈ N}, where, for each n ∈ N, un := uεn , is bounded in Rb([−τ,+∞); X). From
( f1) in (H f ), we conclude that {t �→ f (t, unt ); n ∈ N} is uniformly bounded and thus
uniformly integrable in L1(0, T ; X) for each T > 0. From Theorem 4, we deduce that the
family of functions

{
t �→

[
un(t) −

∫ t

0
S(t − s)dg(s)

]
; n ∈ N

}
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is relatively compact in C([ 0, T ]; X) for each T > 0. Indeed, taking

D = {h(un)(0); n ∈ N} ,

which is bounded and

F = {t �→ f (t, unt ); n ∈ N} ,

we get that

M(D,F) =
{

t �→
[

un(t) −
∫ t

0
S(t − s)dg(s)

]
; n ∈ N

}

is relatively compact inC([ δ, T ]; X) for each T > 0 and δ ∈ (0, T ). In particular,M(D,F)

is relatively compact in C([ a,+∞); X) endowed with the uniform convergence on com-
pacta topology. So, {un} is relatively compact inR([ a,+∞); X). So, on some subsequence,
denoted for simplicity again by (un)n , we have limn un = u in R([ a,+∞); X). By (Hh),
it follows that limn h(un) = h(u) in R[−τ, 0 ]; X) and so limn h(un)(0) = h(u)(0), which
means thatD is relatively compact in X . Hence, we are in the hypotheses of Theorem 4which
implies thatM(D,F) is relatively compact in C(R+; X) endowed with the convergence on
compacta topology. This clearly shows that {un; n ∈ N} is relatively compact inR(R+; X).

Accordingly, on a subsequence at least, we can pass to the limit in the variation of constants
formula

un(t) = S(t)un(0) +
∫ t

0
S(t − s) f (s, uns) ds +

∫ t

0
S(t − s)dg(s)

uniformly for t in compact subsets in R+. We get

u(t) = S(t)u(0) +
∫ t

0
S(t − s) f (s, us) ds +

∫ t

0
S(t − s)dg(s)

for each t ∈ R+. On the other hand, since h is continuous fromR(R+; X) toR([−τ, 0 ]; X),
it follows that

lim
n

un(t) = lim
n

(1 − εn)h(un)(t) = h(u)(t)

uniformly for t ∈ [−τ, 0 ]. Thus u is an L∞-solution of the Problem (1) and this completes
the proof. 
�

Remark 5 A simple analysis of the arguments above shows that wemay relax the hypotheses
(A1) in (HA) and (Hc), imposed in Theorem 5, to

( Ã1) there exist M ≥ 1 and ω > 0 such that ‖S(t)‖ ≤ Me−ωt for each t ∈ R+;
(H̃c) The constants M , � and ω satisfy M� < ω.

7 An example

Example 7.1 Let Ω be a bounded domain inRd , d ∈ N∗, with sufficiently smooth boundary
Γ and let τ ≥ 0. Let F : R+ × R → R be a continuous function, let H : R × R → R and
let ψ ∈ R([−τ, 0 ]; L1(Ω)).
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Let (ti )i∈N be an increasing sequence, let (gi )i∈N be a sequence in L1(Ω), and let g :
R+ → L1(Ω) be defined by

g(t)(x) :=
∑

{i; ti ≤t}
gi (x) (23)

Clearly, g is a sum of Heaviside-like L1(Ω)-valued functions and belongs to
BVloc(R+; L1(Ω)). So,

dg(t)(x) =
∞∑

i=1

gi (x)δ(t − ti )

for (t, x) ∈ R+ × Ω , where δ(t − ti ) is the Dirac delta concentrated at the point ti , i =
0, 1, 2, . . . .

Let ω > 0, let Q+ := R+ × Ω , Σ+ := R+ × Γ and Qτ := [−τ, 0 ] × Ω , and let us
consider the linear delay parabolic equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du(t) =
[
Δu(t) − ωu(t) + F

(
t,

∫ 0

−τ

u(t + s)ds

)]
dt + dg(t) in Q+,

u = 0 on Σ+,

u(t, x) =
∫ +∞

τ

H(s, u(t + s)(x)) dλ(s) + ψ(t)(x) in Qτ .

(24)

In fact (24) describes a diffusion process in which there is a feedback term depending

on the cumulative history of the state, i.e., F

(
t,

∫ 0

−τ

u(t + s)ds

)
and a forcing term, dg(t),

responsible for some instantaneous changes of the speed of propagation.
From Theorem 7, we deduce:

Theorem 9 Let Ω be a bounded domain in Rd , d ∈ N∗, with sufficiently smooth boundary
Γ , let τ ≥ 0, and let ω > 0. Let g be defined by (23), let λ be a positive Radon measure on
R+, and let ψ ∈ R([−τ, 0 ]; L1(Ω)).

We assume that:

(F) The function F : R+ × R → R is continuous and there exists �0 > 0 and m̃ > 0 such
that

|F(t, u)| ≤ �0|u| + m̃,

for all (t, u) ∈ R+ × R. Moreover, F satisfies:

|F(t, u) − F(t, v)| ≤ �0|u − v|,
for all (t, u), (t, v) ∈ R+ × R.

(G) The functions gi , i = 0, 1, 2, . . . , in (23) satisfy

∞∑
i=0

eωti ‖gi+1 − gi‖L1(Ω) < +∞.

(H) The function H : R+ ×R → R is continuous and there exists α in L1(R+; λ,R+) such
that ∫ +∞

b
α(s) dλ(s) ≤ 1
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and

|H(s, v) − H(s, w)| ≤ α(s)|v − w|
for each s ∈ [ b,+∞) and v,w ∈ R.

(C) The constants τ , b, �0 and ω satisfy b − τ > 0 and �0τ < ω.

Then, the Problem (24) has at least one L∞-solution u ∈ Rb([−τ,+∞); L1(Ω)).

Proof In order to use Theorem 7, we shall rewrite (24) as a delay evolution equation with
measures subjected to a nonlocal initial condition in an appropriate real Banach space. First,
let us define the operator A : D(A) ⊆ L1(Ω) → L1(Ω) by{

D(A) = {u ∈ W 1,1
0 (Ω);Δu ∈ L1(Ω)};

Au = Δu − ωu, for each u ∈ D(A).

It is well known that A generates a compact C0-semigroup of contractions on the space
X = L1(Ω). Moreover, ω is exactly that one in (A1) in (HA). See for instance Vrabie [29,
Theorem 7.2.7, p. 160].

Now, let us observe that (24) may be rewritten as a Cauchy problem in L1(Ω) of the form:{
du(t) = [Au(t) + f (t, ut )]dt + dg(t), t ∈ R+,

u(t) = h(u)(t), t ∈ [−τ, 0 ],
where A and g are as above, while f : R+ × R([−τ, 0 ]; L1(Ω)) → L1(Ω) and h :
Rb(R+; L1(Ω)) → R([−τ, 0 ]; L1(Ω)) are defined by

f (t, u)(x) = F

(
t,

∫ 0

−τ

u(t + s)(x)ds

)

for each u ∈ R([−τ, 0 ]; L1(Ω)), t ∈ R+ and a.e. for x ∈ Ω and, respectively, by

[h(u)(t)](x) :=
∫ +∞

b
H(s, u(t + s)(x)) dλ(s) + ψ(t)(x)

for each u ∈ Rb(R+; L1(Ω)), t ∈ [−τ, 0 ] and a.e. for x ∈ Ω .
By (iii) in Vrabie [29, Lemma A.6.1, p. 313], it readily follows that f is well defined

and continuous on R+ × R([−τ, 0 ]; L1(Ω)). Moreover, by (F) and (C), it follows that it
satisfies ( f1) in (H f ) with � = �0τ and m = m̃μ(Ω). By (G), we conclude that g satisfies
(Hg), while from (H), we deduce that h satisfies (Hh) with a = b − τ . Again, by (C), we
conclude that � and ω satisfy(Hc).

Then, by Theorem 7, we conclude that the Problem (24) has at least one L∞-solution and
this completes the proof. 
�

As far as the case of purely singular measures is concerned, we have:

Theorem 10 Let Ω be a bounded domain in Rd , d ∈ N∗, with sufficiently smooth boundary
Γ , let τ ≥ 0, and let ω > 0. Let g be a function in BVloc(R+; L1(Ω)) ∩ C(R+; L1(Ω)), let
λ be a positive Radon measure on R+, and let ψ ∈ R([−τ, 0 ]; L1(Ω)).

We assume that:

(F) The function F : R+ × R → R is continuous and there exist �0 > 0 and m̃ > 0 such
that

|F(t, u)| ≤ �0|u| + m̃,

for all (t, u) ∈ R+ × R.
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(G̃) There exists m1 > 0 such that∫ t

0
eωs dVar(g; [ 0, s ]) ≤ m1

for each t ∈ R+.
(H) The function H : R+ × R → R is continuous and there exists α in L1(R+; λ,R+)

such that ∫ +∞

b
α(s) dλ(s) ≤ 1

and

|H(s, v) − H(s, w)| ≤ α(s)|v − w|
for each s ∈ [ b,+∞) and v,w ∈ R.

(C) The constants τ , b, �0 and ω satisfy b − τ > 0 and �0τ < ω.

Then, the Problem (24) has at least one L∞-solution u ∈ Rb([−τ,+∞); L1(Ω)).

Remark 6 We emphasize that the really interesting case is that in which g is not in
W 1,1

loc (R+; L1(Ω)) when the Problem (24) reduces to a classical one, i.e., when dg(t) can be
substituted by f ′(t)dt .
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of the presentation.
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10. Burlică, M.D., Roşu, D.: A class of nonlinear delay evolution equations with nonlocal initial conditions.
Proc. Am. Math. Soc. 142, 2445–2458 (2014)
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