We derive a suitable expression for estimating the size of the cooperatively rearranging regions (CRRs) in supercooled polymer melts by fitting data worked out by ordinary relaxation experiments carried out in isothermal conditions. As an example, the average CRR size in poly(n-butyl methacrylate) in proximity to the glass transition temperature is derived from a stress relaxation experiment performed by means of an atomic force microscopy setup. Good agreement is found with results in the literature derived from measurements of temperature fluctuations (the so-called Donth method). The temperature dependence of the CRR size is explored for poly(butadiene); in this case the segmental relaxation function is derived through a novel method for the analysis of the efficiency with which free induction decay echoes are refocused in 1H NMR experiments. It is found that the CRR size increases upon cooling. The results derived from the analysis of the NMR data are found to be in satisfactory agreement with those worked out from broadband dielectric spectroscopy data in the literature
Small and large scale segmental motion in polymers: Estimating cooperativity length by ordinary relaxation experiments / Pieruccini, Marco; Alessandrini, Andrea; Sturniolo, Simone; Corti, Maurizio; Rigamonti, Attilio. - In: POLYMER INTERNATIONAL. - ISSN 0959-8103. - STAMPA. - 64:11(2015), pp. 1506-1512. [10.1002/pi.4894]
Small and large scale segmental motion in polymers: Estimating cooperativity length by ordinary relaxation experiments
ALESSANDRINI, Andrea;
2015
Abstract
We derive a suitable expression for estimating the size of the cooperatively rearranging regions (CRRs) in supercooled polymer melts by fitting data worked out by ordinary relaxation experiments carried out in isothermal conditions. As an example, the average CRR size in poly(n-butyl methacrylate) in proximity to the glass transition temperature is derived from a stress relaxation experiment performed by means of an atomic force microscopy setup. Good agreement is found with results in the literature derived from measurements of temperature fluctuations (the so-called Donth method). The temperature dependence of the CRR size is explored for poly(butadiene); in this case the segmental relaxation function is derived through a novel method for the analysis of the efficiency with which free induction decay echoes are refocused in 1H NMR experiments. It is found that the CRR size increases upon cooling. The results derived from the analysis of the NMR data are found to be in satisfactory agreement with those worked out from broadband dielectric spectroscopy data in the literatureFile | Dimensione | Formato | |
---|---|---|---|
Polym-Int_64_1506_(2015).pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
342.35 kB
Formato
Adobe PDF
|
342.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris