We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (V_{DR} = R/8) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result.
Dimensional regularization of the path integral in curved space on an infinite time interval / Bastianelli, F; Corradini, Olindo; Van Nieuwenhuizen, P.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 490:1-2(2000), pp. 154-162. [10.1016/S0370-2693(00)00978-3]
Dimensional regularization of the path integral in curved space on an infinite time interval
CORRADINI, Olindo;
2000
Abstract
We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (V_{DR} = R/8) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result.File | Dimensione | Formato | |
---|---|---|---|
PLB490.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
139.11 kB
Formato
Adobe PDF
|
139.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris