In this paper a recent extension (P.Contucci, C.Giardina', C.Giberti, EPL.96, 17003 (2011)) of the stochastic stability property ( M.Aizenman, P.Contucci, Journal of Statistical Physics, Vol.92, N. 5/6, 765-783, (1998)) is analyzed and shown to lead to the Ghirlanda Guerra identities for Gaussian spin glass models. The result is explicitly obtained by integration by parts techinque.

Structural spin-glass identities from a stability property: an explicit derivation / Contucci, Pierluigi; Giardina', Cristian; Giberti, Claudio. - ELETTRONICO. - Vol. 1805, 37-50, August (2012) Lecture Notes of the Research Institute for Mathematical Sciences, Kyoto University.:(2012), pp. 37-50. (Intervento presentato al convegno Applications of the Renormalization Group Methods in Mathematical Sciences tenutosi a Kyoto nel 12/9/2011).

Structural spin-glass identities from a stability property: an explicit derivation

GIARDINA', Cristian;GIBERTI, Claudio
2012

Abstract

In this paper a recent extension (P.Contucci, C.Giardina', C.Giberti, EPL.96, 17003 (2011)) of the stochastic stability property ( M.Aizenman, P.Contucci, Journal of Statistical Physics, Vol.92, N. 5/6, 765-783, (1998)) is analyzed and shown to lead to the Ghirlanda Guerra identities for Gaussian spin glass models. The result is explicitly obtained by integration by parts techinque.
2012
Applications of the Renormalization Group Methods in Mathematical Sciences
Kyoto
12/9/2011
Vol. 1805, 37-50, August (2012) Lecture Notes of the Research Institute for Mathematical Sciences, Kyoto University.
37
50
Contucci, Pierluigi; Giardina', Cristian; Giberti, Claudio
Structural spin-glass identities from a stability property: an explicit derivation / Contucci, Pierluigi; Giardina', Cristian; Giberti, Claudio. - ELETTRONICO. - Vol. 1805, 37-50, August (2012) Lecture Notes of the Research Institute for Mathematical Sciences, Kyoto University.:(2012), pp. 37-50. (Intervento presentato al convegno Applications of the Renormalization Group Methods in Mathematical Sciences tenutosi a Kyoto nel 12/9/2011).
File in questo prodotto:
File Dimensione Formato  
contucci-RIMS-2.pdf

Open access

Descrizione: Articolo Principale
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 237.22 kB
Formato Adobe PDF
237.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1070916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact