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Structural spin-glass identities from a stability

property: an explicit derivation

Pierluigi Contucci 1, Cristian Giardinà 2, Claudio Giberti 3

Abstract

In this paper a recent extension [1] of the stochastic stability property [2] is analyzed

and shown to lead to the Ghirlanda Guerra identities for Gaussian spin glass models.

The result is explicitly obtained by integration by parts techinque.

1 Definitions

We consider a disordered model of Ising configurations σn = ±1, n ∈ Λ ⊂ L for some

subset Λ (volume |Λ|) of some infinite graph L. We denote by ΣΛ the set of all σ =

{σn}n∈Λ, and |ΣΛ| = 2|Λ|. In the sequel the following definitions will be used.

1. Hamiltonian.

For every Λ ⊂ L let {HΛ(σ)}σ∈ΣΛ
be a family of 2|Λ| translation invariant (in distri-

bution) Gaussian random variables defined according to the general representation

HΛ(σ) = −
∑
X⊂Λ

JXσX (1.1)

where

σX =
∏
i∈X

σi , (1.2)

1pierluigi.contucci@unibo.it, Università di Bologna, Piazza di Porta S.Donato 5 - 40127 Bologna, Italy
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(σ∅ = 0) and the J ’s are independent Gaussian variables with mean

Av(JX) = 0 , (1.3)

and variance

Av(J2
X) = ∆2

X . (1.4)

2. Average and Covariance matrix.

The Hamiltonian HΛ(σ) has covariance matrix

CΛ(σ, τ) := Av (HΛ(σ)HΛ(τ))

=
∑
X⊂Λ

∆2
XσXτX . (1.5)

The two classical examples are the covariances of the Sherrington-Kirkpatrick model

and the Edwards-Anderson model. A simple computation shows that the first

is the square of the site overlap 1
N

∑N
i=1 σiτi and the second is the link-overlap

1
|Λ|
∑
|i−j|=1 σiσjτiτj. Defining

DΛ := CΛ(σ, σ) =
∑
X⊂Λ

∆2
X , (1.6)

by the Schwarz inequality we obtain

|CΛ(σ, τ)| ≤
√
CΛ(σ, σ)

√
CΛ(τ, τ) = DΛ (1.7)

for all σ and τ .

3. Thermodynamic Stability.

The Hamiltonian (1.1) is thermodynamically stable if there exists a constant c̄ such

that

sup
Λ⊂L

1

|Λ|
∑
X⊂Λ

∆2
X ≤ c̄ < ∞ . (1.8)

Thanks to the relation (1.7) a thermodynamically stable model fulfills the bound

CΛ(σ, τ) ≤ c̄ |Λ| (1.9)
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and has an order 1 normalized covariance

cΛ(σ, τ) :=
1

|Λ|
CΛ(σ, τ) . (1.10)

4. Random partition function.

ZΛ(β) :=
∑
σ∈ΣΛ

eβHΛ(σ), (1.11)

5. Random Boltzmann-Gibbs state

ωβ,Λ(−) :=
∑
σ∈ΣΛ

(−)
eβHΛ(σ)

ZΛ(β)
, (1.12)

and its R-product version

Ωβ,Λ(−) :=
∑

σ(1),...,σ(R)

(−)
eβ[HΛ(σ(1))+···+HΛ(σ(R))]

[ZΛ(β)]R
. (1.13)

6. Quenched overlap observables.

For any smooth bounded function G(cΛ) (without loss of generality we consider

|G| ≤ 1 and no assumption of permutation invariance on G is made) of the covari-

ance matrix entries we introduce (with a small abuse of notation) the random R×R

matrix of elements {ck,l} (called generalized overlap) and its measure 〈−〉Λ by the

formula

〈G(c)〉Λ := Av (Ωβ,Λ(G(cΛ))) . (1.14)

E.g.: G(cΛ) = cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))

〈c1,2c2,3〉Λ = Av

 ∑
σ(1),σ(2),σ(3)

cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))
eβ[

∑3
i=1 HΛ(σ(i))]

[Z(β)]3

 . (1.15)

2 Standard Stochastic Stability

Given the Gaussian process HΛ(σ) of covariance CΛ(σ, τ) and an independent Gaussian

process, KΛ(σ), defined by the covariance cΛ(σ, τ), we introduce the deformed random

state

ω
(λ)
Λ (−) =

ωβ,Λ(−eλKΛ)

ωβ,Λ(eλKΛ)
(2.16)
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and its relative deformed quenched state

〈−〉(λ)
Λ = Av

(
Ω

(λ)
Λ (−)

)
, (2.17)

where Ω
(λ)
Λ (−) is the R-fold product of ω

(λ)
Λ .

Definition 2.1 Stochastic Stability [2, 4]

A Gaussian spin glass model is stochastically stable if the deformed quenched state and

the original one do coincide in the thermodynamic limit:

lim
Λ↗L
〈−〉(λ)

Λ = lim
Λ↗L
〈−〉Λ . (2.18)

Since the Hamiltonian H and the field K have a mutually rescaled distribution

HΛ
D
=
√
|Λ|KΛ (2.19)

(where
D
= means equality in distribution) the addition law for the Gaussian variables

implies √
β2 +

λ2

|Λ|
H(σ)

D
= βH(σ) + λK(σ) , (2.20)

i.e. the deformation with a field K is equivalent to a change of the order O( 1
|Λ|) in the

temperature. The previous formula shows that the deformed measures do coincide, a part

on points of discontinuity with respect to the temperature, with the original unperturbed

one.

The stochastic stability property implies the vanishing, in the thermodynamic limit,

of all the derivatives of the deformed state :

lim
Λ↗L

∂n〈−〉(λ)
Λ

∂λn
= 0 . (2.21)

This formulation of the stability property implies some overlap identities. The simplest

one is obtained considering: 〈c1,2〉(λ)
Λ . The fact that the first derivative in λ is equal to

zero (in the thermodynamic limit)

lim
Λ↗L

∂〈c1,2〉(λ)
Λ

∂λ
|λ=0 = 0 (2.22)
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does not give information because actually for every volume one has

∂〈c1,2〉(λ)
Λ

∂λ
|λ=0 = 0. (2.23)

This is immediately realized by defining

f(λ) =

√
β2 +

λ2

|Λ|

and noticing that

f ′(λ)|λ=0 = 0.

However the second derivative being equal to zero in the thermodynamic limit

lim
Λ↗L

∂2〈c1,2〉(λ)
Λ

∂λ2
|λ=0 = 0 (2.24)

does give information, since

f ′′(λ)|λ=0 =
1

β|Λ|
.

Indeed an explicit computation of

∂2〈c1,2〉(λ)
Λ

∂λ2
|λ=0 (2.25)

which uses integration by parts (see the next section) gives the first Aizenman-Contucci

polynomial:

lim
Λ↗L
〈c2

1,2 − 4c1,2c2,3 + 3c1,2c3,4〉Λ = 0. (2.26)

Besides Stochastic Stability, there is another mechanism which generates identities. This

is a very basic principle of statistical mechanics, i.e. the vanishing of the fluctuation of

the energy per particle (self averaging): at increasing volumes the energy per particle

approaches a constant with respect to the equilibrium measure. The consequence of the

self averaging is a family of relations called Ghirlanda-Guerra identities [3, 5].

Theorem 1 (Ghirlanda-Guerra Identities) For a bounded function v of the general-

ized overlaps {ci,j} (with i, j ∈ {1, ..., s}) the quantity δΛ(β) defined by:

〈v c1,s+1〉Λ =
1

s
〈v〉Λ 〈 c1,2〉Λ +

1

s

s∑
j=2

〈v c1,j〉Λ + δΛ(β) (2.27)

goes to zero in β−average and in the thermodynamic limit: Λ↗ L.
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3 A perturbed state

Let us introduce a new state which, unlike (2.17), does not involve an indipendent Gaus-

sian process as a perturbing therm. In fact in this case we perturb the state through a

small deformation ∆(λ)HΛ of the same Hamiltonian which defines the model:

〈〈−〉〉(λ)
Λ :=

Av
(
ωβ,Λ(− e∆(λ)HΛ)

)
Av (ωβ,Λ(e∆(λ)HΛ))

, (3.28)

where ∆(λ) ≡ ∆Λ(λ) is any function satisfying

∆Λ(0) = 0, ∆Λ(λ)→ 0 as |Λ| → ∞, ∆′Λ(0) = a/|Λ| (3.29)

(with a positive constant), e.g. ∆Λ(λ) = λ/|Λ|. Obviously 〈〈−〉〉(0)
Λ = 〈−〉Λ. The explicit

the expression of (3.28) reads

〈〈f〉〉(λ)
Λ =

Av
(∑

σ f(σ)e(β+∆(λ))HΛ(σ)∑
σ e

βHΛ(σ)

)
Av
(∑

σ e
(β+∆(λ))HΛ(σ)∑
σ e

βHΛ(σ)

) , (3.30)

where f is a function of the spin configurations. It is useful to define a symbol for denoting

the random measure ωΛ(− e∆(λ)HΛ) introduced in (3.28) and its R-fold products:

φ
(λ)
Λ (−) := ωΛ(− e∆(λ)HΛ) =

∑
σ

(−)
eg(λ)HΛ(σ)

ZΛ(β)
, Φ

(λ,...,λ)
Λ (−) :=

∑
σ(1),...,σ(R)

(−)
R∏
r=1

eg(λ)HΛ(σ(r))

ZΛ(β)
,

(3.31)

where

g(λ) = β + ∆Λ(λ) (3.32)

and ZΛ(β) is defined in (1.11). Obviously φ(0) = ωΛ while Φ(0,0) is identical to ΩΛ with

2 copies, Φ(0,0,0) is ΩΛ with 3 copies etc... and, for instance, Φ(λ,0) is the random product

state in which only the first copy is perturbed.

The quenched versions of the previous measures are:

[−]
(λ)
Λ := Av

(
φ

(λ)
Λ (−)

)
, [−]

(λ,...,λ)
Λ := Av

(
Φ

(λ,...,λ)
Λ (−)

)
, (3.33)

thus 〈〈−〉〉(λ)
Λ =

[−]
(λ)
Λ

[1]
(λ)
Λ

. The same perturbation of (3.28) applied to R copies of the system,

yelds the measure on the replicated system for which we retain the same symbol used for

6



the 1-copy version:

〈〈−〉〉(λ)
Λ =

[−]
(λ,...,λ)
Λ

[1]
(λ,...,λ)
Λ

. (3.34)

Remark: We observe that while the stochastic stability perturbation (2.17), as much as

the standard perturbation for deterministic system, amounts to a small temperature shift,

the newly introduced perturbation cannot be reduced to just a small temperature change but

it also involves a small change in the disorder. Indeed, we can rewrite (3.28) as follows

〈〈−〉〉(λ)
Λ =

Av
(
Qβ,λ · ωβ+∆(λ),Λ(−)

)
Av (Qβ,λ)

. (3.35)

where

Qβ,λ :=
ZΛ(β + ∆(λ))

ZΛ(β)
. (3.36)

Therefore, defining a new disorder average

Av(λ)(−) :=
Av (Qβ,λ · −)

Av (Qβ,λ)
, (3.37)

we have:

〈〈−〉〉(λ)
Λ = Av(λ)

(
ωβ+∆(λ),Λ(−)

)
, (3.38)

which shows clearly that the new state is the composition of a themperature shift with a

suitable deformation of the disorder.

Going through the same steps of section 2, we want the explore the content of the pertur-

bation (3.28) computing the derivatives of 〈〈c1,2〉〉(λ)
Λ ; since we required that g′(λ)|λ=0 6= 0,

it will be enough to consider the first derivative. The computation requires the following

important lemma [6]:

Lemma 1 (Gaussian integration by parts) Let {x1, x2, . . . , xn} a family of Gaussian

random variables and ψ(z1, . . . , zn) a smooth function of at most polynomial growth. Then

Av (xiψ(x1, . . . , xn)) =
n∑
j=1

Av (xixj) Av

(
∂ψ(x1, . . . , xn)

∂xj

)
. (3.39)

�

The first result of the paper is the following:
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Theorem 2 Considering the perturbed state (3.28) with perturbation ∆Λ(λ) satisfying

(3.29), we have

∂〈〈c1,2〉〉(λ)
Λ

∂λ

∣∣∣∣∣
λ=0

= 2aβ
(
〈c2

1,2〉Λ − 2〈c1,2c2,3〉Λ + 〈c1,2〉2Λ
)
.

Proof:

Since the gaussian integration by parts formula involves the covariance of the hamiltonian

family, it is convenient to write

〈〈c1,2〉〉(λ)
Λ =

1

|Λ|
A1(λ)

B1(λ)
(3.40)

with

A1(λ) = [CΛ]
(λ)
Λ = Av

(∑
σ,τ

Cσ,τ
eg(λ)HΛ(σ)eg(λ)HΛ(τ)

ZΛ(β)2

)
(3.41)

where Cσ,τ := CΛ(σ, τ) are the elements of the covariance matrix CΛ given in (1.5) (ex-

tensive quantities), and

B1(λ) = [1]
(λ)
Λ = Av

(∑
σ,τ

eg(λ)HΛ(σ)eg(λ)HΛ(τ)

ZΛ(β)2

)
. (3.42)

Let us compute the derivative of (3.40) starting from:

dA1(λ)

dλ
= g′(λ)Av

(∑
σ,τ

Cσ,τ (HΛ(σ) +HΛ(τ))
eg(λ)HΛ(σ)eg(λ)HΛ(τ)

ZΛ(β)2

)
. (3.43)

Applying the integration by parts formula and recalling (1.5), we have:

Av

(
HΛ(σ)

g(λ)(HΛ(σ)+HΛ(τ))

ZΛ(β)2

)
=
∑
η

Cσ,ηAv

(
∂

∂HΛ(η)

eg(λ)(HΛ(σ)+HΛ(τ))

ZΛ(β)2

)
=

∑
η

Cσ,η Av

([
g(λ)(δσ,η + δτ,η)− 2β

eβHΛ(η)

ZΛ(β)

]
eg(λ)(HΛ(σ)+HΛ(τ))

ZΛ(β)2

)
, (3.44)

where δσ,η is the Kronecker delta function. Multiplying the last therm by Cσ,τ and sum-

ming over the configurations, we have

g(λ)Av

(∑
σ,τ

Cσ,τCσ,σ
eg(λ)(HΛ(σ)+HΛ(τ))

ZΛ(β)2

)
+ g(λ)Av

(∑
σ,τ

C2
σ,τ

eg(λ)(HΛ(σ)+HΛ(τ))

ZΛ(β)2

)

− 2βAv

(∑
σ,τ,η

Cσ,τCσ,η
eg(λ)(HΛ(σ)+HΛ(τ))+βHΛ(η))

ZΛ(β)3

)
= DΛg(λ)[C1,2]

(λ,λ)
Λ + g(λ)[C2

1,2]
(λ,λ)
Λ − 2β[C1,2C2,3]

(λ,λ,0)
Λ (3.45)

8



where DΛ is defined in (1.6). Thus

dA1(λ)

dλ
= 2DΛg(λ)g′(λ)[C1,2]

(λ,λ)
Λ + 2g(λ)g′(λ)[C2

1,2]
(λ,λ)
Λ − 4βg′(λ)[C1,2C2,3]

(λ,λ,0)
Λ . (3.46)

The derivative of B1(λ)

dB1(λ)

dλ
= g′(λ)Av

(∑
σ,τ

(HΛ(σ) +HΛ(τ))
eg(λ)HΛ(σ)eg(λ)HΛ(τ)

ZΛ(β)2

)
. (3.47)

can be obtained from the previous computation by formally substituting Cσ,τ with 1:

dB1(λ)

dλ
= 2DΛg(λ)g′(λ)Av

(
m(λ)2

)
+2g(λ)g′(λ)[C1,2]

(λ,λ)
Λ −4βg′(λ)Av

(
m(λ)φ(λ,0)(C1,2)

)
.

(3.48)

where m(λ) = φ(λ)(1), (m(0) = 1). Computing the derivatives in zero and recalling (1.10),

we find (dΛ = DΛ/|Λ|):

dA1(λ)

dλ

∣∣∣∣
λ=0

= 2βa|Λ|
(
dΛ〈c1,2〉Λ + 〈c2

1,2〉Λ − 2〈c1,2c2,3〉Λ
)

(3.49)

and
dB1(λ)

dλ

∣∣∣∣
λ=0

= 2βa(dΛ − 〈c1,2〉Λ). (3.50)

Since
d

dλ

(
A1(λ)

B1(λ)

)
=
A′1(λ)B1(λ)− A1(λ)B′1(λ)

B1(λ)2
, (3.51)

using (3.49),(3.50), and the fact that A1(0) = |Λ|〈c1,2〉Λ and B1(0) = 1, we immediately

deduce that:

∂〈〈c1,2〉〉(λ)
Λ

∂λ

∣∣∣∣∣
λ=0

=
1

|Λ|
d

dλ

(
A1(λ)

B1(λ)

)∣∣∣∣
λ=0

= 2βa
(
〈c2

1,2〉Λ − 2〈c1,2c2,3〉Λ + 〈c1,2〉2Λ
)
. (3.52)

�

The same computation can be extended to a generic function v of the overlaps of s

copies (the previous theorem corresponds to the case v = c1,2). Here we denote by c

the collection of all the entries c = {ci,j}i,j=1...,s. Recalling the definition (3.34) of the

deformed product state, we have:

〈〈v(c)〉〉(λ)
Λ =

Av
(∑

σ(1),...,σ(s) v(c) e
g(λ)(HΛ(σ(1))+...+HΛ(σ(s)))

Z(β)s

)
Av
(∑

σ(1),...,σ(s)
eg(λ)(HΛ(σ(1))+...+HΛ(σ(s))

Z(β)s

) (3.53)

where σ(j) represents the generic configuration of the j−th copy of the system.
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Theorem 3 (Deformation of s copies) Let v be a function of the overlaps of s copies,

then for the deformed average (3.53) with perturbation ∆Λ(λ) satisfying (3.29), we have

∂〈〈v(c)〉〉(λ)
Λ

∂λ

∣∣∣∣∣
λ=0

= aβ

 s∑
`,k=1
` 6=k

〈v(c) c`,k〉Λ + s〈v(c)〉Λ〈c1,2〉Λ − s
s∑
`=1

〈v(c) c`,s+1〉Λ

 (3.54)

Proof:We now define

〈〈v(c)〉〉(λ)
Λ =

A2(λ)

B2(λ)
(3.55)

and, for the sake of notation

S(σ̂) =
s∑
j=1

HΛ(σ(j)), (3.56)

where σ̂ = (σ(1), . . . , σ(s)) ∈ Σs
Λ is the generic configuration of the product system.

The derivative of B2(λ) is

dB2(λ)

dλ
= g′(λ)Av

∑
σ̂

S(σ̂)
eg(λ)S(σ̂)

ZΛ(β)s

 = g′(λ)
s∑

k=1

Av

∑
σ̂

HΛ(σ(k))
eg(λ)S(σ̂)

ZΛ(β)s

 (3.57)

The computation of the summand in (3.57) goes parallel to that of (3.61), resulting in

Av

(
HΛ(σ(k))

eg(λ)S(σ̂)

ZΛ(β)s

)
=
∑
η

Cσ(k),η Av

([
g(λ)

(
s∑
j=1

δσ(j),η

)
− 2β

eβHΛ(η)

ZΛ(β)

]
eg(λ)S(σ̂)

ZΛ(β)s

)
.

(3.58)

Summing over σ̂ and k, we obtain

g(λ)
s∑

j,k=1

Av

∑
σ̂

Cσ(k),σ(j)

eg(λ)S(σ̂)

ZΛ(β)s

− sβ s∑
k=1

Av

∑
σ̂, η

Cσ(k),η

eg(λ)S(σ̂)eβHΛ(η)

ZΛ(β)s+1

 . (3.59)

Thus, recalling the notations introduced in (3.33), we obtain

dB2(λ)

dλ
= g(λ)g′(λ)

s∑
j,k=1

[Cj,k]
(λ,...,λ)
Λ − sβg′(λ)

s∑
j=1

[Cj,s+1]
(λ,...,λ,0)
Λ . (3.60)

The derivative of A2(λ) is

dA2(λ)

dλ
= g′(λ)Av

∑
σ̂

v(c)S(σ̂)
eg(λ)S(σ̂)

ZΛ(β)s

 = g′(λ)
s∑

k=1

Av

∑
σ̂

v(c)HΛ(σ(k))
eg(λ)S(σ̂)

ZΛ(β)s

 ,

(3.61)
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therefore it can be computed formally by inserting v(c) in (3.57):

g(λ)
s∑

j,k=1

Av

∑
σ̂

v(c)Cσ(k),σ(j)

eg(λ)S(σ̂)

ZΛ(β)s

− sβ s∑
k=1

Av

∑
σ̂, η

v(c)Cσ(k),η

eg(λ)S(σ̂)eβHΛ(η)

ZΛ(β)s+1

 .(3.62)

The final result is

dA2(λ)

dλ
= g(λ)g′(λ)

s∑
j,k=1

[v(c)Cj,k]
(λ,...,λ)
Λ − sβg′(λ)

s∑
j=1

[v(c)Cj,s+1]
(λ,...,λ,0)
Λ . (3.63)

Computing the derivatives in λ = 0, we obtain

dB2(λ)

dλ

∣∣∣∣
λ=0

= aβ
s∑

j,k=1

〈cj,k〉Λ − saβ
s∑
j=1

〈cj,s+1〉Λ

= aβ
(
(s2 − s)〈c1,2〉Λ + sdΛ − s2〈c1,2〉Λ

)
= aβs (dΛ − 〈c1,2〉Λ) (3.64)

since 〈cj,k〉 is independent of the replica indices and, being the self-overlap a constant

cσ,σ = dΛ, we have also 〈ck,k〉 = dΛ (dΛ = DΛ/|Λ|). For the same reason we can also write:

dA2(λ)

dλ

∣∣∣∣
λ=0

= aβ
s∑

j,k=1

〈v(c)cj,k〉Λ − saβ
s∑
j=1

〈v(c)cj,s+1〉Λ

= aβ

 s∑
j,k=1
j 6=k

〈v(c)cj,k〉Λ + sdΛ〈v(c)〉Λ − saβ
s∑
j=1

〈v(c)cj,s+1〉Λ

 . (3.65)

The proof is completed recalling that A2(0) = 〈v(c)〉Λ and B2(0) = 1.

�

The previous result can be further simplyfied assuming that the function v(c) be invariant

with respect the permutation of the replicas. In fact in that case the therm in (3.54) is

∂〈〈v(c)〉〉(λ)
Λ

∂λ

∣∣∣∣∣
λ=0

= aβs

(
s∑

k=2

〈v(c) c1,k〉Λ + 〈v(c)〉Λ〈c1,2〉Λ − s〈v(c) c`,s+1〉Λ

)
(3.66)

Relaxing the invariance hypothesis on v(c), we can obtain the same result perturbing only

one replica. Without loss of generality, we assume to perturb the first copy:

〈〈v(c)〉〉(λ)1

Λ =
Av
(∑

σ(1),σ̃ v(c) e
g(λ)HΛ(σ(1))+βTΛ(σ̃)

Z(β)s

)
Av
(∑

σ(1),σ̃
eg(λ)HΛ(σ(1))+βTΛ(σ̃)

Z(β)s

) (3.67)
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where σ̃ = (σ(2), . . . , σ(s)) and

TΛ(σ̃) =
s∑
j=2

HΛ(σ(j)). (3.68)

Then we can state the following

Theorem 4 (Deformation of 1 copy) Let v be a funcion of the overlaps of s copies,

then for the deformed average (3.67) with perturbation ∆Λ(λ) satisfying (3.29), we have

∂〈〈v(c)〉〉(λ)1

Λ

∂λ

∣∣∣∣∣
λ=0

= aβ

(
s∑

k=2

〈v(c) c1,k〉Λ + 〈v(c)〉Λ〈c1,2〉Λ − s〈v(c) c`,s+1〉Λ

)
(3.69)

Proof:

Let us denote with A3(λ) and B3(λ) the numerator and denominator of (3.67). Thus,

dB3(λ)

dλ
= g′(λ)Av

 ∑
σ(1), σ̃

HΛ(σ(1))
eg(λ)HΛ(σ(1))+βTΛ(σ̃)

ZΛ(β)s

 (3.70)

which, applying the integration by parts lemma, can be rewritten as:

dB3(λ)

dλ
= g′(λ)Av

 ∑
σ(1), σ̃

∑
η
Cσ(1),η

(
g(λ)δσ(1),η + β

s∑
j=2

δσ(j),η

)
eg(λ)HΛ(σ(1))+βTΛ(σ̃)

ZΛ(β)s


− sβAv

 ∑
σ(1), σ̃

∑
η
Cσ(1),η

eg(λ)HΛ(σ(1))+β(TΛ(σ̃)+HΛ(η))

ZΛ(β)s+1


= DΛg(λ)g′(λ) [1]

(λ,0,...,0)
Λ − saβg′(λ) [C1,s+1](λ,0,...,0)

Λ + βg′(λ)
s∑
j=2

[C1,j]
(λ,0,...,0)
Λ . (3.71)

Computing the derivative in λ = 0 and recalling that 〈ci,j〉Λ is independent of the replica

labels, we have:

dB3(λ)

dλ

∣∣∣∣
λ=0

= dΛaβ − saβ〈c1,2〉Λ + (s− 1)aβ〈c1,2〉Λ = dΛaβ − aβ〈c1,2〉Λ. (3.72)

The derivative of A3

dA3(λ)

dλ
= g′(λ)Av

∑
σ(1)σ̃

v(c)HΛ(σ(1))
eg(λ)HΛ(σ(1))+βTΛ(σ̃)

ZΛ(β)s

 (3.73)
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is computed inserting v(c) in (3.71) :

dA3(λ)

dλ
= DΛg(λ)g′(λ) [v(c)]

(λ,0,...,0)
Λ −saβg′(λ) [v(c)C1,s+1](λ,0,...,0)

Λ +βg′(λ)
s∑
j=2

[v(c)C1,j]
(λ,0,...,0)
Λ

(3.74)

and
dA3(λ)

dλ

∣∣∣∣
λ=0

= dΛaβ〈v(c)〉Λ − saβ〈v(c)c1,s+1〉Λ + aβ

s∑
j=2

〈v(c)c1,j〉Λ. (3.75)

The result is obtained combining (3.74) and (3.76) to form the derivative of A3(λ)/B3(λ).

�

We conclude discussing briefly the stability of the new deformation. Rephrasing the

definition of Sthocastic Stability, we should claim that the new state is stable if :

lim
Λ↗L
〈〈−〉〉(λ)

Λ = lim
Λ↗L
〈−〉Λ. (3.76)

We plan to study this strong form of asymptotic equivalence between the two states in

a forthcoming paper. Here, we can make the weaker statement that the two measures

coincide (for large volumes) in the first order of the perturbation parameter λ. In fact

the previous theorems imply that the perturbed state, either with 1 or s deformed copies,

satisfies the following realtion:

〈〈v(c)〉〉(λ)
Λ − 〈v(c)〉Λ = a1 GΛ(v(c), s)λ+ h.o.t , (3.77)

where a1 is a constant and GΛ(v(c), s) any of the expressions involved in Theorems 2,3 or

4, e.g.:

GΛ(v(c), s) =
s∑

k=2

〈v(c) c1,k〉Λ + 〈v(c)〉Λ〈c1,2〉Λ − s〈v(c) c`,s+1〉Λ. (3.78)

Thus, from theorem 1 it follows that, at the first order in λ, 〈〈v(c)〉〉(λ)
Λ − 〈v(c)〉Λ goes to

zero, in β−average and in the thermodynamic limit.
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[5] P. Contucci, C. Giardinà, “The Ghirlanda-Guerra identities”, Journ. Stat. Phys.

Vol. 126, 917-931 (2007).

[6] M. Talagrand, “Spin glasses: a challenge for mathematicians”, Springer (2003).

14


