Energy harvesting from kinetic ambient energy is particularly effective to power autonomous sensors. This work proposes an innovative energy converter based on two counteracting Belleville springs and exploiting their peculiarity, for a height to thickness ratio equal to 1.414, of nearly zero stiffness over a wide deflection range. After analytical and numerical modelling a prototype is developed and experimentally investigated. The sub-optimal geometry of the commercial springs used in the prototype, together with a non-ideal response, makes the operating frequency for the prototype higher than in analytical and numerical predictions. Nevertheless, the harvester exhibits a significantly large bandwidth, together with a high output power, compared to similar solutions in the literature, for all the examined configurations and input excitations.
A Belleville-spring-based electromagnetic energy harvester / Castagnetti, Davide. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - STAMPA. - 24:9(2015), pp. 1-15. [10.1088/0964-1726/24/9/094009]
A Belleville-spring-based electromagnetic energy harvester
CASTAGNETTI, Davide
2015
Abstract
Energy harvesting from kinetic ambient energy is particularly effective to power autonomous sensors. This work proposes an innovative energy converter based on two counteracting Belleville springs and exploiting their peculiarity, for a height to thickness ratio equal to 1.414, of nearly zero stiffness over a wide deflection range. After analytical and numerical modelling a prototype is developed and experimentally investigated. The sub-optimal geometry of the commercial springs used in the prototype, together with a non-ideal response, makes the operating frequency for the prototype higher than in analytical and numerical predictions. Nevertheless, the harvester exhibits a significantly large bandwidth, together with a high output power, compared to similar solutions in the literature, for all the examined configurations and input excitations.File | Dimensione | Formato | |
---|---|---|---|
SMS-101729.Castagnetti.Reviewed.Paper.pdf
Open Access dal 22/08/2016
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris