Autosomal recessive epidermolysis bullosa (RDEB) is a genetic skin adhesion defect caused by mutations in the type VII collagen gene (COL7A1). Although full-length type-VII collagen is successfully produced in human keratinocytes by retroviral vectors, genetic instability due to the large size (9kb) and the highly repeated nature of the gene sequence is a persistent problem. The Sleeping-Beauty (SB) transposon-based integration system can potentially overcome these issues by taking advantage of the hyperactive SB100X transposase in combination with the wild-type (pT2) transposon or the “sandwich” version (pSA) that showed robust transposition efficiency in human cells. We molecularly characterized the “sandwich” SB-mediated integrants in epithelial cell lines and in primary keratinocytes. Co-transfecting the transposase together with 10kb-transposon (pT2 or pSA) we observed up to 37% of transposition in HaCaT and in GABEB (generalized atrophic benign epidermolysis bullosa keratinocytes) cells with both transposons. Clonal analysis demonstrated that the transposition events occur with a minimal risk of rearrangements (<3%). LM-PCR based bi-directional sequencing of the transposon-genome junctions shows genuine “cut and paste” activity of the SB hyperactive transposase.

Non viral gene transfer via Sleeping beauty transposon for Collagen VII delivery in human primary keratinocytes / Latella, Maria Carmela; Turchiano, Giandomenico; Cocchiarella, Fabienne; Izsvak, Zsuzsanna; Ivics, Zoltan; Mavilio, Fulvio; Recchia, Alessandra. - In: HUMAN GENE THERAPY. - ISSN 1043-0342. - 23:10(2012), pp. A59-A59.

Non viral gene transfer via Sleeping beauty transposon for Collagen VII delivery in human primary keratinocytes.

LATELLA, Maria Carmela;TURCHIANO, GIANDOMENICO;COCCHIARELLA, Fabienne;MAVILIO, Fulvio;RECCHIA, Alessandra
2012

Abstract

Autosomal recessive epidermolysis bullosa (RDEB) is a genetic skin adhesion defect caused by mutations in the type VII collagen gene (COL7A1). Although full-length type-VII collagen is successfully produced in human keratinocytes by retroviral vectors, genetic instability due to the large size (9kb) and the highly repeated nature of the gene sequence is a persistent problem. The Sleeping-Beauty (SB) transposon-based integration system can potentially overcome these issues by taking advantage of the hyperactive SB100X transposase in combination with the wild-type (pT2) transposon or the “sandwich” version (pSA) that showed robust transposition efficiency in human cells. We molecularly characterized the “sandwich” SB-mediated integrants in epithelial cell lines and in primary keratinocytes. Co-transfecting the transposase together with 10kb-transposon (pT2 or pSA) we observed up to 37% of transposition in HaCaT and in GABEB (generalized atrophic benign epidermolysis bullosa keratinocytes) cells with both transposons. Clonal analysis demonstrated that the transposition events occur with a minimal risk of rearrangements (<3%). LM-PCR based bi-directional sequencing of the transposon-genome junctions shows genuine “cut and paste” activity of the SB hyperactive transposase.
2012
Latella, Maria Carmela; Turchiano, Giandomenico; Cocchiarella, Fabienne; Izsvak, Zsuzsanna; Ivics, Zoltan; Mavilio, Fulvio; Recchia, Alessandra...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1063699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact