Ordered silicon nanocrystals in silicon carbide are produced by Plasma Enhanced Chemical Vapor Deposition by means of the multilayer approach followed by annealing at 1100 C. The crystallization is verified by Raman scattering, X-ray diffraction, Transmission Electron Microscopy, and UV–vis spectroscopy. The conditions for the periodic structure to survive the high temperature annealing and for the SiC barrier to confine the Si crystal growth are examined by energy-filtered transmission electron microscopy and X-ray reflection. The final layout appears to be strongly influenced by the structural features of the as-deposited multilayer. Threshold values of Si-rich carbide sublayer thickness and Si-to-C ratio are identified in order to preserve the ordered structure. The crystallized fraction is observed to be correlated with the total silicon volume fraction. The constraints are examined through the use of ab-initio calculations of matrix-embedded silicon nanocrystals, as well as in terms of existing models for nanocrystal formation, in order to establish the role played by the interface energy on nanocrystal outgrowth, residual amorphous fraction, and continuous crystallization. A parameter space of formation of ordered Si nanocrystals is proposed. The diffusivity of carbon in the crystallized material is evaluated, and estimated to be around 10–16 cm2/s at 1100 C.

Silicon nanocrystals in carbide matrix / C., Summonte; M., Allegrezza; M., Bellettato; F., Liscio; M., Canino; A., Desalvo; J., Lopez Vidrier; S., Hernandez; L., Lopez Conesa; S., Estrade; F., Peiro; B., Garrido; P., Loeper; M., Schnabel; S., Janz; Guerra, Roberto; Ossicini, Stefano. - In: SOLAR ENERGY MATERIALS AND SOLAR CELLS. - ISSN 0927-0248. - STAMPA. - 128:(2014), pp. 138-149. [10.1016/j.solmat.2014.05.003]

Silicon nanocrystals in carbide matrix

GUERRA, Roberto;OSSICINI, Stefano
2014

Abstract

Ordered silicon nanocrystals in silicon carbide are produced by Plasma Enhanced Chemical Vapor Deposition by means of the multilayer approach followed by annealing at 1100 C. The crystallization is verified by Raman scattering, X-ray diffraction, Transmission Electron Microscopy, and UV–vis spectroscopy. The conditions for the periodic structure to survive the high temperature annealing and for the SiC barrier to confine the Si crystal growth are examined by energy-filtered transmission electron microscopy and X-ray reflection. The final layout appears to be strongly influenced by the structural features of the as-deposited multilayer. Threshold values of Si-rich carbide sublayer thickness and Si-to-C ratio are identified in order to preserve the ordered structure. The crystallized fraction is observed to be correlated with the total silicon volume fraction. The constraints are examined through the use of ab-initio calculations of matrix-embedded silicon nanocrystals, as well as in terms of existing models for nanocrystal formation, in order to establish the role played by the interface energy on nanocrystal outgrowth, residual amorphous fraction, and continuous crystallization. A parameter space of formation of ordered Si nanocrystals is proposed. The diffusivity of carbon in the crystallized material is evaluated, and estimated to be around 10–16 cm2/s at 1100 C.
2014
128
138
149
Silicon nanocrystals in carbide matrix / C., Summonte; M., Allegrezza; M., Bellettato; F., Liscio; M., Canino; A., Desalvo; J., Lopez Vidrier; S., Hernandez; L., Lopez Conesa; S., Estrade; F., Peiro; B., Garrido; P., Loeper; M., Schnabel; S., Janz; Guerra, Roberto; Ossicini, Stefano. - In: SOLAR ENERGY MATERIALS AND SOLAR CELLS. - ISSN 0927-0248. - STAMPA. - 128:(2014), pp. 138-149. [10.1016/j.solmat.2014.05.003]
C., Summonte; M., Allegrezza; M., Bellettato; F., Liscio; M., Canino; A., Desalvo; J., Lopez Vidrier; S., Hernandez; L., Lopez Conesa; S., Estrade; F., Peiro; B., Garrido; P., Loeper; M., Schnabel; S., Janz; Guerra, Roberto; Ossicini, Stefano
File in questo prodotto:
File Dimensione Formato  
solmatcrabide.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1037917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact