We obtain two-sided bounds for the density of stochastic processes satisfying a weak H"ormander condition. In particular we consider the cases when the support of the density is not the whole space and when the density has various asymptotic regimes depending on the starting/final points considered (which are as well related to the number of brackets needed to span the space in H"ormander's theorem). The proofs of our lower bounds are based on Harnack inequalities for positive solutions of PDEs whereas the upper bounds are derived from the probabilistic representation of the density given by the Malliavin calculus.
Two-sided bounds for degenerate processes with densities supported in subsets of R^N / Chiara, Cinti; Stephane, Menozzi; Polidoro, Sergio. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - STAMPA. - 42:1(2015), pp. 39-98. [10.1007/s11118-014-9424-7]
Two-sided bounds for degenerate processes with densities supported in subsets of R^N
POLIDORO, Sergio
2015
Abstract
We obtain two-sided bounds for the density of stochastic processes satisfying a weak H"ormander condition. In particular we consider the cases when the support of the density is not the whole space and when the density has various asymptotic regimes depending on the starting/final points considered (which are as well related to the number of brackets needed to span the space in H"ormander's theorem). The proofs of our lower bounds are based on Harnack inequalities for positive solutions of PDEs whereas the upper bounds are derived from the probabilistic representation of the density given by the Malliavin calculus.File | Dimensione | Formato | |
---|---|---|---|
Lavoro311012.pdf
Open Access dal 02/08/2015
Descrizione: Articolo
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
381.41 kB
Formato
Adobe PDF
|
381.41 kB | Adobe PDF | Visualizza/Apri |
CMP POTA.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris