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Two-sided bounds for degenerate processes with densities

supported in subsets of RN

Chiara Cinti∗, Stéphane Menozzi †and Sergio Polidoro‡

Abstract: We obtain two-sided bounds for the density of stochastic processes satisfying a weak
Hörmander condition. In particular we consider the cases when the support of the density is
not the whole space and when the density has various asymptotic regimes depending on the
starting/final points considered (which are as well related to the number of brackets needed
to span the space in Hörmander’s theorem). The proofs of our lower bounds are based on
Harnack inequalities for positive solutions of PDEs whereas the upper bounds are derived
from the probabilistic representation of the density given by the Malliavin calculus.
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1 Introduction

We present a methodology to derive two-sided bounds for the density of some RN -valued
degenerate processes of the form

Xt = x+

n∑
i=1

∫ t

0
Yi(Xs) ◦ dW i

s +

∫ t

0
Y0(Xs)ds (1.1)

where the (Yi)i∈[[0,n]] are smooth vector fields defined on RN , ((W i
t )t≥0)i∈[[1,n]] stand for n-

standard monodimensional independent Brownian motions defined on a filtered probability
space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. Also ◦ dWt denotes the Stratonovitch
integral. The above stochastic differential equation is associated to the Kolmogorov operator

L = 1
2

n∑
i=1

Y 2
i + Z, Z = Y0 − ∂t. (1.2)

We assume that the Hörmander condition holds:
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[H] Rank(Lie{Y1, · · · , Yn, Z}(x)) = N + 1, ∀x ∈ RN .

We will particularly focus on processes satisfying a weak Hörmander condition, that is
Rank(Lie{Y1, · · · , Yn,−∂t}(x)) < N + 1, ∀x ∈ RN . This means that the first order vector
field Y0 (or equivalently the drift term of the SDE) is needed to span all the directions.

As leading examples we have in mind processes of the form

Xi
t = xi +W i

t , ∀i ∈ [[1, n]], Xn+1
t = xn+1 +

∫ t

0
|X1,n

s |kds, (1.3)

where X1,n
s = (X1

s , · · · , Xn
s ) (and correspondingly for every x ∈ Rn+1, x1,n := (x1, · · · , xn)),

k is any even positive integer and |.| denotes the Euclidean norm of Rn. Note that we only
consider even exponents in (1.3) in order to keep Y0 smooth. Our approach also applies to

Xi
t = xi +W i

t , ∀i ∈ [[1, n]], Xn+1
t = xn+1 +

∫ t

0

n∑
i=1

(Xi
s)

kds, (1.4)

for any given positive integer k.
It is easily seen that the above class of processes satisfies the weak Hörmander condition.

Also for equation (1.3), the density p(t, x, .) of Xt is supported on Rn × (xn+1,+∞) for any
t > 0. Analogously, for equation (1.4), the support of p(t, x, .) is Rn+1 when k is odd and
Rn × (xn+1,+∞) when k is even.

Let us now briefly recall some known results concerning these two examples. First of all,
for k = 1, equation (1.4) defines a Gaussian process. The explicit expression of the density
goes back to Kolmogorov [25] and writes for all t > 0, x, ξ ∈ Rn+1:

pK(t, x, ξ) =

√
3

(2π)
n+1
2 t

n+3
2

exp

(
−

{
1

4

|ξ1,n − x1,n|2

t
+ 3

|ξn+1 − xn+1 −
∑n

i=1(xi+ξi)
2 t|2

t3

})
. (1.5)

We already observe the two time scales associated respectively to the Brownian motion (of
order t1/2) and to its integral (of order t3/2) which give the global diagonal decay of order
tn/2+3/2. The additional term x1+ξ1

2 t in the above estimate is due to the transport of the
initial condition by the unbounded drift. We also refer to the works of Cinti and Polidoro
[17] and Delarue and Menozzi [19] for similar estimates in the more general framework of
variable coefficients, including non linear drift terms with linear growth.

For equation (1.3) and k = 2, n = 1, a representation of the density of Xt has been
obtained from the seminal works of Kac on the Laplace transform of the integral of the
square of the Brownian motion [23]. We can refer to the monograph of Borodin and Salminen
[10] for an explicit expression in terms of special functions. We can also mention the work of
Tolmatz [39] concerning the distribution function of the square of the Brownian bridge already
characterized in the early work of Smirnov [36]. Anyhow, all these explicit representations
are very much linked to Liouville type problems and this approach can hardly be extended
to higher dimensions for the underlying Brownian motion. Also, it seems difficult from the
expressions of [10] to derive explicit quantitative bounds on the density.
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Some related examples have been addressed by Ben Arous and Léandre [5] who obtained
asymptotic expansions for the density on the diagonal for the process X1

t = x1 +W 1
t , X

2
t =

x2 +
∫ t
0 (X

1
s )

mdW 2
s +

∫ t
0 (X

1
s )

kds. Various asymptotic regimes are deduced depending on m
and k. Anyhow, the strong Hörmander condition is really required in their approach, i.e. the
stochastic integral is needed in X2.

From the applicative point of view, equations with quadratic growth naturally appear in
some turbulence models, see e.g. the chapter concerning the dyadic model in Flandoli [20].
This model is derived from the formulation of the Euler equations on the torus in Fourier
series after a simplification consisting in considering a nearest neighbour interaction in the
wave space. This operation leads to consider an infinite system of differential equations
whose coefficients have quadratic growth. In order to obtain some uniqueness properties, a
Brownian noise is usually added on each component. In the current work, we investigate from
a quantitative viewpoint what can be said for a drastic reduction of this simplified model,
that is when considering 2 equations only, when the noise only acts on one component and
is transmitted through the system thanks to the (weak) Hörmander condition.

Our approach to derive two-sided estimates for the above examples is the following. The
lower bounds are obtained using local Harnack estimates for positive solutions of L u = 0
with L defined in (1.2). Once the Harnack inequality is established, the lower bound for
p(t, x, ξ) is derived applying it recursively along a suitable path joining x to ξ in time t. The
set of points of the path to which the Harnack inequality is applied is commonly called a
Harnack chain. For k = 1 in (1.4) the path can be chosen as the solution to the deterministic
controllability problem associated to (1.4), that is taking the points of the Harnack chain
along the path γ where

γ′i(s) = ωi(s), ∀i ∈ [[1, n]], γ′n+1(s) =

n∑
i=1

γi(s), γ(0) = x, γ(t) = ξ.

and ω : L2([0, t]) → Rn achieves the minimum of
∫ t
0 |ω(s)|

2ds, see e.g. Boscain and Polidoro
[11], Carciola et al. [13] and Delarue and Menozzi [19].

In the more general case k > 1 it is known that uniqueness fails for the associated control
problem, i.e. when γ′n+1(s) =

∑n
i=1(γi(s))

k in the above equation (see e.g. Trélat [40]).
Therefore, there is not a single natural choice for the path γ. Actually, we will consider
suitable paths in order to derive homogeneous two-sided bounds. After the statement of our
main results, we will see in Remark 2.2 that the paths we consider allow to obtain a cost
similar to the one found in [40] for the abnormal extremals of the value function associated
to the control problem.

Anyhow, the crucial point in this approach is to obtain a Harnack inequality invariant
w.r.t. scale and translation. Introducing for all (m,x) ∈ N∗ × Rn+1 the space Vm(x) :=
{
(
(Yi1)i1∈[[1,n]], ([Yi1 , Yi2 ](x))(i1,i2)∈[[0,n]]2 , · · · , ([Yi1 , [Yi2 , · · · , [Yim−1 , Yim ]]](x))(i1,··· ,im)∈[[0,n]]m

)
},

the above invariance properties imply that dim(Span{Vm(x)}) does not depend on x for any
m. This property fails for k > 1 since we need exactly k brackets to span the space at
x = (01,n, xn+1) and exactly one bracket elsewhere. Hence, we need to consider a lifting
procedure of L in (1.2) introduced by Rotschild and Stein [35] (see also Bonfiglioli and
Lanconelli [6]). Our strategy then consists in obtaining an invariant Harnack inequality
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for the lifted operator L̃ . We then conclude applying the previous Harnack inequality to
L -harmonic functions (which are also L̃ -harmonic). A first attempt to achieve the whole
procedure to derive a lower bound for (1.4) and odd k can be found in Cinti and Polidoro
[16].

Concerning the upper bounds, we rely on the representation of the density of p obtained by
the Malliavin calculus. We refer to Nualart [33] for a comprehensive treatment of this subject.
The main issues then consist in controlling the tails of the random variables at hand and the
Lp norm of the Malliavin covariance matrix for p ≥ 1. The tails can be controlled thanks to
some fine properties of the Brownian motion or bridge and its local time. The behavior of the
Malliavin covariance matrix has to be carefully analyzed introducing a dichotomy between
the case for which the final and starting points of the Brownian motion in (1.3)-(1.4) are close
to zero w.r.t. the characteristic time-scale, i.e. |x1,n|∨|ξ1,n| ≤ Kt1/2 for a given K > 0, which
means that the non-degenerate component is in diagonal regime, and the complementary set.
In the first case, we will see that the characteristic time scales of the system (1.3), (1.4) and
the probabilistic approach to the proof of Hörmander theorem, see e.g. Norris [31] will lead
to the expected bound on the Malliavin covariance matrix whereas in the second case a more
subtle analysis is required in order to derive a diagonal behavior of the density similar to
the Gaussian case (1.5). Intuitively, when the magnitude of either the starting or the final
point of the Brownian motion is above the characteristic time-scale, then only one bracket is
needed to span the space and the Gaussian regime prevails in small time.

Note that our procedure can be split in two steps. In the first one, purely PDEs methods
provide us with lower bounds of the density p. In this part useful information about its
asymptotic behavior in various regimes are obtained by elementary arguments. Once the
lower bounds have been established, we rely on some ad hoc tools of the Malliavin calculus
to prove the analogous upper bounds. However, aiming at improving the readability of our
work, we reverse our exposition: we first prove the upper bounds, as well as the diagonal
ones, by using probabilistic methods, then we prove the lower bounds by PDEs arguments.

The article is organized as follows. We state our main results in Section 2. We then recall
some basic facts of Malliavin calculus in Section 3 and obtain the upper bounds as well as a
diagonal lower bound in Gaussian regime in Section 4.In Section 5, we recall some aspects of
abstract potential theory needed to derive the invariant Harnack inequality. We also give a
geometric characterization of the set where the inequality holds. Section 6 is devoted to the
proof of the lower bounds.

2 Main Results

Before giving the precise statement of our bounds for the the density p of X in (1.3) or (1.4),
we give some remarks. In the sequel p(t, x, .) stands for the density of any stochastic process
X at time t starting from x. It is well known that, if the vector fields Y1, . . . , Yn (note that
the drift term Y0 does not appear) satisfy the Hörmander condition, then the following two
sided bound holds:

p(t, x, ξ) ≍ 1√
vol (BY (x, t))

exp

(
−dY (x, ξ)

2

t

)
. (2.1)
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Here and in the sequel, for measurable functions g : R+∗ ×Rn → R, h : R+∗ ×R2n, the above
notation p(t, x, ξ) ≍ 1

g(t,x) exp(−h(t, x, ξ)) means that there exists a constant C ≥ 1 s.t.

C−1

g(t, x)
exp(−Ch(t, x, ξ)) ≤ p(t, x, ξ) ≤ C

g(t, x)
exp(−C−1h(t, x, ξ)). (2.2)

Moreover, in (2.1), dY denotes the Carnot-Carathéodory distance associated to Y1, . . . , Yn,
and BY (x, r) is the relevant metric ball, with center at x and radius r. On the other hand
(1.5) shows that, when the drift term Y0 is needed to check the Hörmander condition, the
density p of the processX doesn’t satisfy (2.1). In this article we prove that, when considering
processes (1.3) and (1.4) with k > 1, different asymptotic behavior as |x| → +∞ appear.

To be more specific, we first remark that a behavior similar to (1.5) can also be observed
for equations (1.3) and (1.4).Conditioning w.r.t. to the non degenerate component we get

p(t, x, ξ) = pX1,n(t, x1,n, ξ1,n) pXn+1(t, xn+1, ξn+1|X1,n
0 = x1,n, X

1,n
t = ξ1,n),

where pX1,n(t, x1,n, ξ1,n) =
1

(2πt)n/2 exp(−
|ξ1,n−x1,n|2

2t ) is the usual Gaussian density,

pXn+1(t, xn+1, ξn+1|X1,n
0 = x1,n, X

1,n
t = ξ1,n) = pYt(ξn+1 − xn+1),

Yt :=

{∫ t
0 |

t−s
t x1,n + s

t ξ1,n +W 0,t
s |kds for (1.3),∫ t

0

∑n
i=1(

t−s
t xi +

s
t ξi +W 0,t,i

s )kds for (1.4),

and (W 0,t
s )u∈[0,t] stands for the standard d-dimensional Brownian bridge on [0, t], i.e. starting

and ending at 0.
For the sake of simplicity, we next focus on the case n = 1 and k = 2 so that (1.3) and

(1.4) coincide. Moreover we assume x1 = ξ1. This leads to estimate the density of:

Yt :=

∫ t

0
(x1 +W 0,t

s )2ds = tx21 + 2x1

∫ t

0
W 0,t

s ds+

∫ t

0
(W 0,t

s )2ds. (2.3)

Thus, when |x1| is sufficiently big w.r.t. the characteristic time scale t1/2, the Gaussian
random variable

G := 2x1

∫ t

0
W 0,t

s ds
(law)
= N

(
0, t

3

3 |x1|
2
)

dominates in terms of fluctuation order w.r.t. the other random contribution whose variance
behaves as O(t4) 1.

If we additionally assume that |ξ2 − x2 − tx21| ≤ C|x1|t3/2, for some constant C := C(n =
1, k = 2) to be specified later on, that is the deviation from the deterministic system deriving

1The previous identity in law is derived from Itô’s formula and the differential dynamics of the Brownian

bridge. Namely,
∫ t

0
W 0,t

s ds =
{
−(t− s)W 0,t

s |t0 +
∫ t

0
(t− s)

(
−W0,t

s
t−s

ds+ dWs

)}
⇐⇒

∫ t

0
W 0,t

s ds = 1
2

∫ t

0
(t −

s)dWs.
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from (1.3), obtained dropping the Brownian contribution, has the same order as the standard
deviation of G, we actually find:

p(t, x, ξ) ≍ 1

|x1|t
1+3
2

exp

(
−
{
|ξ1 − x1|2

t
+

|ξ2 − x2 − x21t|2

|x1|2t3

})
.

When |ξ2−x2−tx21| > C|x1|t3/2, that is when the deviation from the deterministic system
exceeds a certain constant times the standard deviation, the term

∫ t
0 (W

0,t
s )2ds in (2.3) is not

negligeable any more and we obtain the following heavy-tailed estimate:

p(t, x, ξ) ≍ 1

t
1
2
+2

exp

(
−
{
|ξ1 − x1|2

t
+

|ξ2 − x2 − x21t|
t2

})
.

The diagonal contribution of the degenerate component corresponds to the intrinsic scale of
order t2 of the term

∫ t
0 (W

0,t
s )2ds. In particular, if x1,n = 01,n this is the only random variable

involved. The off-diagonal bound can be explained by the fact that
∫ t
0 (W

0,t
s )2ds belongs to

the Wiener chaos of order 2. The tails of the distribution function for such random variables
can be characterized, see e.g. Janson [22], and are homogeneous to the non Gaussian term
in the above estimate.

Observe also that the density p is supported on the half space {ξ ∈ R2 : ξ2 > x2}. We
obtain as well an asymptotic behavior for the density close to the boundary. Precisely, for
0 < ξ2 − x2 sufficiently small w.r.t. to the characteristic time-scale t2 of

∫ t
0 (W

0,t
s )2ds, that is

when the deviations of the degenerate component have the same magnitude as those of the
highest order random contribution, then

p(t, x, ξ) ≍ 1

t1/2+2
exp

(
−
{
|x1|4 + |ξ1|4

ξ2 − x2
+

t2

(ξ2 − x2)

})
.

We summarize the above remarks with the assertion that processes of the form (1.3) or
(1.4) do not have a single regime for k > 1.The precise statements of the previous density
bounds are formulated for general n and k in the following Theorem 2.1.

Theorem 2.1 Let x = (x1,n, xn+1) ∈ Rn+1, and ξ = (ξ1,n, ξn+1) ∈ Rn × (xn+1,+∞) for k
even, and ξ ∈ Rn+1 for k odd, be given. Define

Ψ(x1,n, ξ1,n) :=

{
|x1,n|k + |ξ1,n|k, for (1.3),∑n

i=1{(xi)k + (ξi)
k}, for (1.4).

i) Assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≥ C where c := c(k) = 2 + 2k−1

k+1 and C is fixed.

Then there exists a constant C1 := C1(n, k, C) ≥ 1 s.t. for every t > 0,

C−1
1

t
n+k
2

+1
exp
(
− C1I(t, x, ξ,

1

2k+4
)
)
≤ p(t, x, ξ) ≤ C1

t
n+k
2

+1
exp
(
− C−1

1 I(t, x, ξ,
2k−1

k + 1
)
)
, (2.4)

∀c ∈ R+, I(t, x, ξ, c) :=
|ξ1,n − x1,n|2

t
+

|ξn+1 − xn+1 − cΨ(x1,n, ξ1,n)t|2/k

t1+2/k
.
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ii) Assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C (with c, C as in point i)) and |x1,n|∨|ξ1,n|/t1/2 ≥

K, with K sufficiently large. Then, there exists C2 := C2(n, k,K,C) ≥ 1 s.t. for every
t > 0:

C−1
2 exp(−C2I(t, x, ξ))

(|x1,n|k−1 + |ξ1,n|k−1)t
n+3
2

≤ p(t, x, ξ) ≤ C2 exp(−C−1
2 I(t, x, ξ))

(|x1,n|k−1 + |ξ1,n|k−1)t
n+3
2

, (2.5)

I(t, x, ξ) :=
|ξ1,n − x1,n|2

t
+

|ξn+1 − xn+1 −Ψ(x1,n, ξ1,n)t|2

(|x1,n|(k−1) + |ξ1,n|(k−1))2t3
.

iii) For t > 0, assume |ξn+1 − xn+1| ≤ Kt1+k/2 for sufficiently small K. Then, there exists
C3 := C3(n, k,K) ≥ 1 s.t. we have:

C−1
3

t
n+k
2

+1
exp(−C3I(t, x, ξ)) ≤ p(t, x, ξ) ≤ C3

t
n+k
2

+1
exp(−C−1

3 I(t, x, ξ)),

I(t, x, ξ) :=
|x1,n|2+k + |ξ1,n|2+k

|ξn+1 − xn+1|
+

t1+2/k

|ξn+1 − xn+1|2/k
. (2.6)

As already pointed out, processes of the form (1.3) or (1.4) do not have a single regime
anymore for k > 1.

Let us anyhow specify that when C−1
√
t ≤ |xi| ≤ C

√
t, ∀i ∈ [[1, n]], C ≥ 1, then

expanding Yt as in (2.3), we find that all the terms have the same order and thus a global
estimate of type (2.4) (resp. of type (2.5)) holds for the upper bound (resp. lower bound) in
both cases (1.3) and (1.4). Observe also that in this case (2.4) and (2.5) give the same global
diagonal decay of order t(k+n)/2+1.

Remark 2.2 As already mentioned in the introduction, for k = 2, n = 1, we observe from
(2.6) that the off-diagonal bound is homogeneous to the asymptotic expansion of the value
function associated to the control problem at its abnormal extremals, see Example 4.2 in [40].

The optimal cost is asymptotically equivalent to 1
4
ξ41
ξ2

when x = (0, 0) as ξ is close to (0, 0).

Remark 2.3 Fix |ξn+1 − xn+1| small, t ∈ [K−1|ξn+1 − xn+1|2−ε,K|ξn+1 − xn+1|2−ε] for
given K ≥ 1, ε > 0. We then get from (2.6) that there exist c̃ := c̃(n, k), C̃ := C̃(n, k, T )
s.t. p(t, x, ξ) ≤ C̃ exp(−c̃/|ξn+1 − xn+1|ε). This estimate can be compared to the exponential
decay on the diagonal proved by Ben Arous and Léandre in [5, Theorem 1.1].

3 A Glimpse of Malliavin Calculus

3.1 Introduction

Introduced at the end of the 70s by Malliavin, [30], [29], the stochastic calculus of variations,
now known as Malliavin calculus, turned out to be a very fruitful tool. It allows to give
probabilistic proofs of the celebrated Hörmander theorem, see e.g. Stroock [37] or Norris
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[31]. It also provides a quite natural way to derive density estimates for degenerate diffusion
processes. The most striking achievement in this direction is the series of papers by Kusuoka
and Stroock, [26], [27], [28]. Anyhow, in those works the authors always considered “strong”
Hörmander conditions, that is the underlying space is assumed to be spanned by brackets
involving only the vector fields of the diffusive part. For the examples (1.3), (1.4) we consider,
this condition is not fulfilled. Anyhow a careful analysis of the Malliavin covariance matrix
will naturally lead to the upper bounds of Theorem 2.1 and also to a Gaussian lower bound,
when the initial or final point of the non-degenerate component is “far” from zero w.r.t.
the characteristic time scale on the compact sets of the underlying metric, see point ii) of
Theorem 2.1.

We also point out that because of the non uniqueness associated to the deterministic
control problem, the strategy of [19] relying on a stochastic control representation of the
density breaks down. For the systems handled in [19], we refer to Bally and Kohatsu-Higa for a
Malliavin calculus approach [2]. The Malliavin calculus remains the most robust probabilistic
approach to density estimate in the degenerate setting.

We now briefly state some facts and notations concerning the Malliavin calculus that
are needed to prove our results. We refer to the monograph of Nualart [32], from which we
borrow the notations, or Chapter 5 in Ikeda and Watanabe [21], for further details.

3.2 Operators of the Malliavin Calculus

Let us consider an n-dimensional Brownian motion W on the filtered probability space
(Ω,F , (Ft)t≥0,P) and a given T > 0. Define for h ∈ L2(R+,Rn), W (h) =

∫ T
0 ⟨h(s), dWs⟩.

We denote by S the space of simple functionals of the Brownian motion W , that is the
subspace of L2(Ω,F ,P) consisting of real valued random variables F having the form

F = f
(
W (h1), · · · ,W (hm)

)
,

for some m ∈ N, hi ∈ L2(R+,Rn), and where f : Rm → R stands for a smooth function with
polynomial growth.

Malliavin Derivative.

For F ∈ S, we define the Malliavin derivative (DtF )t∈[0,T ] as the Rn-dimensional (non
adapted) process

DtF =
m∑
i=1

∂xif
(
W (h1), · · · ,W (hm)

)
hi(t).

For any q ≥ 1, the operator D : S → Lq(Ω, L2(0, T )) is closable. We denote its domain by
D1,q which is actually the completion of S w.r.t. the norm

∥F∥1,q :=
{
E[|F |q] + E[|DF |q

L2(0,T )
]
}1/q

.

Writing Dj
tF for the jth component of DtF , we define the k

th order derivative as the random
vector on [0, T ]k × Ω with coordinates:

Dj1,··· ,jk
t1,··· ,tk F := Djk

tk
· · ·Dj1

t1
F.
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We then denote by DN,q the completion of S w.r.t. the norm

∥F∥N,q :=

{
E[|F |q] +

N∑
k=1

E[|DkF |q
L2
(
(0,T )k

)]}1/q

.

Also, D∞ := ∩q≥1∩j≥1Dj,q. In the sequel we agree to denote for all q ≥ 1, ∥F∥q := E[|F |q]1/q.

Skorohod Integral.

We denote by P the space of simple processes, that is the subspace of L2([0, T ]×Ω,F ×
B([0, T ]), dt⊗ dP) consisting of Rn valued processes processes (ut)t∈[0,T ] that can be written

ut =

m∑
i=1

Fi(W (h1), · · · ,W (hm))hi(t),

for some m ∈ N, where the (Fi)i∈[[1,m]] are smooth real valued functions with polynomial
growth, ∀i ∈ [[1,m]], hi ∈ L2([0, T ],Rn) so that in particular Fi(W (h1), · · · ,W (hm)) ∈ S.

Observe also that with previous definition of the Malliavin derivative for F ∈ S we have
(DsF )s∈[0,T ] ∈ P. For u ∈ P we define the Skorohod integral

δ(u) :=

m∑
i=1

{
Fi(W (h1), · · · ,W (hm))W (hi)−

m∑
j=1

∂jFi(W (h1), · · · ,W (hm))⟨hi, hj⟩L2([0,T ]

}
,

so that in particular δ(u) ∈ S. The Skorohod integral is also closable. Its domain writes

Dom(δ) := {u ∈ L2([0, T ]× Ω) : ∃(un)n∈P , un
L2([0,T ]×Ω)−→

n
u, δ(un)

L2(Ω)−→
n

F := δ(u)}.

Ornstein Uhlenbeck operator.

To state the main tool used in our proofs, i.e. the integration by parts formula in its whole
generality, we need to introduce a last operator. Namely, the Ornstein-Uhlenbeck operator
L which for F ∈ S writes:

LF := δ(DF ) = ⟨∇f
(
W (h)

)
,W (h)⟩ − Tr

(
D2f(W (h))⟨h, h∗⟩L2(0,T )

)
,

W (h) =
(
W (h1), · · · ,W (hm)

)
.

This operator is also closable and D∞ is included in its domain Dom(L).

Integration by parts.

Proposition 3.1 (Integration by parts: first version) Let F ∈ D1,2, u ∈ Dom(δ), then
the following indentity holds:

E[⟨DF, u⟩L2([0,T ])] = E[Fδ(u)],
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that is the Skorohod integral δ is the adjoint of the Malliavin derivative D. As a consequence,
for F,G ∈ Dom(L) we have

E[FLG] = E[Fδ(DG)] = E[⟨DF,DG⟩L2([0,T ])] = E[LFG],

i.e. L is self-adjoint.

These relations can be easily checked for F,G ∈ S, u ∈ P , and extended to the indicated
domains thanks to the closability.

3.3 Chaos Decomposition

Im(fm) := m!

∫ T

0

∫ t1

0
· · ·
∫ tm−1

0
fm(t1, · · · , tm)⊗ dWtm ⊗ · · · ⊗ dWt1 .

In the above equation ⊗ denotes the tensor product and (dWtm ⊗ · · · ⊗ dWt1) ∈ ((Rn)⊗m)
∗
.

We now state a theorem that provides a decomposition of real-valued square-integrable
random variables in terms of series of multiple integrals.

Lemma 3.2 Let F be a real-valued random variable in L2(Ω,F ,P). There exists a sequence
(fm)m∈N s.t.

F =
∑
m∈N

Im(fm), (3.1)

where for all m ∈ N, fm is a symmetric function in L2([0, T ]m, (Rn)⊗m) and

E[F 2] =
∑
m≥0

m!∥fm∥2L2([0,T ]m,(Rn)⊗m) < +∞.

We refer to Theorem 1.1.2 in Nualart [32] for a proof.

Remark 3.3 We use the term chaos decomposition for the previous expansion because the
multiple integral Im maps L2([0, T ]m, (Rn)⊗m) onto the Wiener chaos Hm := {Hm(W (h)), h ∈
L2([0, T ],Rn), ∥h∥L2([0,T ],Rn) = 1}, where Hm stands for the Hermite polynomial of degree m
(see again Theorem 1.1.2 in [32]). The orthogonality of the Hermite polynomials yields the
orthogonality of the Wiener chaos, i.e. E[XY ] = 0, for (X,Y ) ∈ (Hn,Hm), n ̸= m.

The computation of Malliavin derivatives is quite simple for multiple integrals. Indeed,

Dt(Im(fm)) = mIm−1(fm(t, .)) ∈ Rn.

As a consequence, for a random variable F having a decomposition as in (3.1), we have

that it belongs to D1,2 if and only if
∑
m≥1

mm!∥fm∥2L2([0,T ]m,(Rn)⊗m) < +∞ in which case

DtF =
∑

m≥1mIm−1(fm(t, .)) and E[
∫ T
0 |DtF |2dt] =

∑
m≥1

mm!∥fm∥2L2([0,T ]m,(Rn)⊗m). Iterating

10



the procedure, one gets F ∈ DN,2 ⇐⇒
∑+∞

m=N
(m!)2

(m−N)!∥fm∥2L2([0,T ]m,(Rn)⊗m) < +∞ and

Dt1,··· ,tNF =

+∞∑
m=N

m(m− 1) · · · (m−N + 1)Im−N (fm(t1, · · · , tn, .)) ∈ (Rn)⊗N .

Therefore, when a random variable is smooth in the Malliavin sense, i.e. D∞, the Stroock
formula, see [38], provides a representation for the functions (fm)m∈N in the chaotic expansion
in terms of Malliavin derivatives.

Proposition 3.4 (Stroock’s formula) Let F ∈ D∞, then the explicit expression of the
functions (fm)m≥1 in the chaotic expansion (3.1) of F writes:

∀m ∈ N, fm(t1, · · · , tm) = E[Dm
t1,··· ,tmF ] ∈ (Rn)⊗m.

For square integrable process, a result analogous to Lemma 3.2 also holds.

Lemma 3.5 Let (ut)t∈[0,T ] be an Rn-valued process in L2([0, T ]×Ω,F ×B([0, T ]), dt⊗ dP).
There exists a sequence of deterministic functions (gm)m∈N∗ s.t.

ut =
∑
m≥0

Im(gm+1(t, .)), (3.2)

where the square integrable kernels gm+1 are defined on [0, T ]m+1 with values in (Rn)⊗(m+1),
are symmetric in the last m variables and s.t.

∑
m≥0m!∥gm+1∥2L2([0,T ]m+1,(Rn)⊗(m+1))

< +∞.

We refer to Lemma 1.3.1 in [32] for a proof when n = 1.
Also, the Skorohod integral of u ∈ Dom(δ) is quite direct to compute from its chaotic

decomposition (3.2). Namely,

δ(u) :=
∑
m≥0

Im+1(g̃m),

where g̃m(t, t1, · · · , tm) := 1
m+1

[
gm(t1, · · · , tm, t)+

∑m
i=1 gm(t1, · · · , ti−1, t, ti+1, · · · , tm, ti)

]
is

the symmetrization of gm in [0, T ]m+1.

3.4 Representation of densities through Malliavin calculus

For F = (F1, · · · , FN ) ∈ (D∞)N , we define the Malliavin covariance matrix γF by

γi,jF := ⟨DF i, DF j⟩L2(0,T ), ∀(i, j) ∈ [[1, N ]]2.

Let us now introduce the non-degeneracy condition

[ND] We say that the random vector F = (F1, · · · , FN ) satisfies the non degeneracy condition
if γF is a.s. invertible and det(γF )

−1 ∈ ∩q≥1L
q(Ω). In the sequel, we denote the inverse of

the Malliavin matrix by
ΓF := γ−1

F .
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This non degeneracy condition guarantees the existence of a smooth density, i.e. C∞, for the
random variable F , see e.g. Corollary 2.1.2 in [32] or Theorem 9.3 in [21].

The following Proposition will be crucial in the derivation of an explicit representation of
the density.

Proposition 3.6 (Second integration by parts) Let F = (F1, · · · , FN ) ∈ (D∞)N satisfy
the nondegeneracy condition [ND]. Then, for all smooth function φ with polynomial growth,
G ∈ D∞ and all multi-index α,

E[∂αφ(F )G] = E[φ(F )Hα(F,G)],

Hi(F,G) = −
N∑
j=1

{G⟨DΓij
F , DF

j⟩L2(0,T ) + Γij
F ⟨DG,DF

j⟩L2(0,T ) − Γij
FGLF

j}, ∀i ∈ [[1, N ]],

Hα(F,G) =H(α1,··· ,αm)(F,G) = Hαm(F,H(α1,··· ,αm−1)(F,G)).

Also, for all q > 1, and all multi-index α, there exists (C, q0, q1, q2, r1, r2) only depending on
(q, α) s.t.

∥Hα(F,G)∥q ≤ C∥ΓF ∥q0∥G∥q1,r1∥F∥q2,r2 . (3.3)

For the first part of the proposition we refer to Section V-9 of [21]. Concerning equation (3.3),
it can be directly derived from the Meyer inequalities on ∥LF∥q and the explicit definition of
H, see also Proposition 2.4 in Bally and Talay [3].

A crucial consequence of the integration by parts formula is the following representation
for the density.

Corollary 3.7 (Expression of the density and upper bound) Let F = (F1, · · · , FN ) ∈
(D∞)N satisfy the nondegeneracy condition [ND]. The random vector F admits a density on
RN . Fix y ∈ RN . Introduce ∀(u, v) ∈ R2, φu

0(v) = Iv>u, φ
u
1(v) = Iv≤u. For all multi-index

β = (β1, · · · , βN ) ∈ {0, 1}N the density writes:

pF (y) = E[
N∏
i=1

φyi
βi
(Fi)Hα(F, 1)](−1)|β|, α = (1, · · · , N), |β| :=

N∑
i=1

βi. (3.4)

As a consequence of (3.4) and (3.3) we get for all multi-index β ∈ {0, 1}N :

∃C > 0, pF (y) ≤ C
N∏
i=1

E[φyi
βi
(Fi)]

γ(i)∥Hα(F, 1)∥2, γ(i) = 2−(i+1). (3.5)

Proof. Let B :=
∏N

i=1[ai, bi],∀i ∈ [[1, N ]], ai < bi. Denote for all u ∈ R, I0(u) :=

(−∞, u), I1(u) := [u,∞). Set finally, for all multi-index β ∈ {0, 1}N , ∀y ∈ RN , Ψβ
B(y) =∫∏N

i=1 Iβi (yi)
IB(x)dx. Proposition 3.6 applied with α = (1, · · · , N) and Ψβ

B yields

E[∂αΨβ
B(F )] = E[Ψβ

B(F )Hα(F, 1)]. (3.6)
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Now, the r.h.s. of equation (3.6) writes

E[Ψβ
B(F )Hα(F, 1)] = E[

∫
∏N

i=1 Iβi (Fi)
IB(y)dyHα(F, 1)] =

∫
B
E[

N∏
i=1

Iyi∈Iβi (Fi)Hα(F, 1)]dy

=

∫
B
E[

N∏
i=1

φyi
βi
(Fi)Hα(F, 1)]dy. (3.7)

The application of Fubini’s theorem for the last but one equality is justified thanks to the
integrability condition (3.3) of Proposition 3.6. On the other hand, the l.h.s. in (3.6) writes

E[∂αΨβ
B(F )] = E[

N∏
i=1

IFi∈[ai,bi](−1)βi ] = (−1)|β|
∫
B
pF (y)dy. (3.8)

Equation (3.4) is now a direct consequence of (3.6), (3.7), (3.8). Equation (3.5) is then simply
derived applying iteratively the Cauchy-Schwarz inequality. �

4 Malliavin Calculus to Derive Upper and Diagonal Bounds
in our Examples

4.1 Strategy and usual Brownian controls

We here concentrate on the particular case of the process (1.3) (indeed the estimates con-
cerning (1.4) can be derived in a similar way). Since condition [H] is satisfied, assumption
[ND] is fullfilled. It then follows from Theorem 2.3.2 in [32] that the process (Xs)s≥0 admits
a smooth density p(t, x, .) at time t > 0. Our goal is to derive quantitative estimates on this
density, emphasizing as well that we have different regimes in function of the starting/final
points.

To do that, we condition w.r.t. to the non-degenerate Brownian component for which we
explicitly know the density. For all (t, x, ξ) ∈ R+∗ × (Rn+1)2 we have:

p(t, x, ξ) = pX1,n(t, x1,n, ξ1,n)pXn+1(t, xn+1, ξn+1|X1,n
0 = x1,n, X

1,n
t = ξ1,n),

pX1,n(t, x1,n, ξ1,n) =
1

(2πt)n/2
exp

(
−|ξ1,n − x1,n|2

2t

)
.

We then focus on the conditional density which agrees with the one of a smooth functional,
in the Malliavin sense, of the Brownian bridge. Precisely:

pXn+1(t, xn+1, ξn+1|X1,n
0 = x1,n, X

1,n
t = ξ1,n) := pYt(ξn+1 − xn+1),

Yt :=

∫ t

0

∣∣∣∣x1,n t− u

t
+ ξ1,n

u

t
+W 0,t

u

∣∣∣∣k du, (4.1)

where (W 0,t
u )u∈[0,t] is the standard n-dimensional Brownian bridge on the interval [0, t]. The

estimation of pYt is the core of the probabilistic part of the current work.
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We recall, see e.g. [34], two ways to realize the standard n-dimensional Brownian bridge
from a standard Brownian motion of Rn. Namely, if (Wt)t≥0 denotes a standard n-dimensional
Brownian motion then

(Wu − u

t
Wt)u∈[0,t]

(law)
= (W 0,t

u )u∈[0,t], (4.2)(
(t− u)

∫ u

0

dWs

t− s

)
u∈[0,t]

(law)
= (W 0,t

u )u∈[0,t]. (4.3)

To recover the framework of Section 3.2, in order to deal with functionals of the Brownian
increments, it is easier to consider the realization of the Brownian bridge given by (4.3).

Remark 4.1 The process (W u)u∈[0,t] := (Wt−u −Wt)u∈[0,t] is a Brownian motion. More-

over, the processes (W u − u
tW t)u∈[0,t] and ((t− u)

∫ u
0

dW s
t−s )u∈[0,t] are standard n-dimensional

Brownian bridges on [0, t] , as well.

For the sake of completeness, we recall some well known results concerning the Brownian
motion and Brownian bridge.

Proposition 4.2 Let q ≥ 1, and (Wt)t≥0 be a standard n-dimensional Brownian motion.
Then, there exists C := C(q, n) > 0 s.t. for all t ≥ 0,

E[|Wt|q] ≤ C(q, n)tq/2, E[ sup
s∈[0,t]

|Ws|q] ≤ C(q, n)tq/2,

E[ sup
s∈[τ,t]

|W 0,t
s |q] ≤ C(q, n)(t− τ)q/2, 0 ≤ τ ≤ t.

Moreover, there exists c := c(n) ≥ 1, s.t. for all ζ ≥ 0, and 0 ≤ τ ≤ t,

P[ sup
s∈[τ,t]

|W 0,t
s | ≥ ζ] ≤ 2 exp

(
− |ζ|2

c(n)(t− τ)

)
.

Proof. The first inequality is a simple consequence of the Brownian scaling. The second one
can be derived from convexity inequalities and Lévy’s identity that we now recall (see e.g.
Chapter 6 in [34]). Let (Bt)t≥0 be a standard scalar Brownian motion. Then:

sup
u∈[0,s]

Bu
(law)
= |Bs|, ∀s > 0. (4.4)

The third inequality follows from the first two and the representation (4.2). Eventually, the
deviation estimates follow from (4.4) as well. These deviations estimates can also be seen as
special cases of Bernstein’s inequality, see e.g. [34] p. 153. �

4.2 Some preliminary estimates on the Malliavin derivative and covariance
matrix

We now give the expressions of the Malliavin derivative and covariance matrix of the scalar
random variable Yt defined in (4.1) and some associated controls.
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Lemma 4.3 (Malliavin Derivative and some associated bounds) Let us set
m(u, t, x1,n, ξ1,n) := x1,n

t−u
t + ξ1,n

u
t . Rewrite

Yt =

∫ t

0
du|m(u, t, x1,n, ξ1,n) +W 0,t

u |k

=

∫ t

0
du{|m(u, t, x1,n, ξ1,n)|2 + |W 0,t

u |2 + 2⟨m(u, t, x1,n, ξ1,n),W
0,t
u ⟩}k/2

=

k/2∑
i=0

Ci
k/2

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k−2i{|W 0,t

u |2 + 2⟨m(u, t, x1,n, ξ1,n),W
0,t
u ⟩}i.

(4.5)

Considering the realization (4.3) of the Brownian bridge, the Malliavin derivative of Yt (seen
as a column vector) and the “covariance” matrix (that is in our case a scalar) write for all
s ∈ [0, t]:

DsYt =

k/2∑
i=1

Ci
k/2

∫ t

s
du|m(u, t, x1,n, ξ1,n)|k−2ii{|W 0,t

u |2 + 2⟨m(u, t, x1,n, ξ1,n),W
0,t
u ⟩}i−1

×2
t− u

t− s

(
W 0,t

u +m(u, t, x1,n, ξ1,n)
)
:=

k/2∑
i=1

Mi(s, t, x1,n, ξ1,n),

γYt =

∫ t

0
ds|DsYt|2. (4.6)

Introduce now

M1(s, t, x1,n, ξ1,n) := k

∫ t

s
du|m(u, t, x1,n, ξ1,n)|k−2 t− u

t− s
m(u, t, x1,n, ξ1,n)

+MR
1 (s, t, x1,n, ξ1,n) := (MD

1 +MR
1 )(s, t, x1,n, ξ1,n), (4.7)

R(s, t, x1,n, ξ1,n) := MR
1 (s, t, x1,n, ξ1,n) +

k/2∑
i=2

Mi(s, t, x1,n, ξ1,n),

γYt =

∫ t

0
ds|(MD

1 +R)(s, t, x1,n, ξ1,n)|2. (4.8)

Set for all τ ∈ [0, t],

Mτ,t :=

∫ t

τ
ds|MD

1 (s, t, ξ1,n, ξ1,n)|2, Mt := M0,t,

Rτ,t :=

∫ t

τ
ds|R(s, t, ξ1,n, ξ1,n)|2, Rt := R0,t. (4.9)

There exists C := C(k, n) ≥ 1 s.t. for all τ ∈ [0, t]:

C−1(t− τ)3(|x1,n|2(k−1) + |ξ1,n|2(k−1)) ≤ Mτ,t ≤ C(t− τ)3(|x1,n|2(k−1) + |ξ1,n|2(k−1)).(4.10)
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Also, for all q ≥ 1, there exists C(k, n, q) s.t.

E[|Rτ,t|q]1/q ≤ C(k, n, q)(t− τ)3(|x1,n| ∨ |ξ1,n|)2(k−1)

× (t− τ)

(|x1,n| ∨ |ξ1,n|)2

(
1 +

(t− τ)1/2

|x1,n| ∨ |ξ1,n|

)2(k−2)

, (4.11)

∀κ ≥ 0, P[Rτ,t ≥ κMτ,t] ≤ c(n, k) exp

(
−κ2 (|ξ1,n| ∨ |x1,n|)2

c(n, k)(t− τ)

)
, (4.12)

for some constant c(n, k) ≥ 1.

Remark 4.4 From (4.10) and (4.11), it follows that

E[Rq
t ]
1/q ≤ C(k, n, q)C

K2

(
1 +

1

K

)2(k−2)

Mt,

when |x1,n|∨|ξ1,n| ≥ Kt1/2. For K := K(k, n, q) large enough, then the term Mt (correspond-
ing to the Malliavin covariance matrix of a Gaussian contribution) dominates the remainder.
This intuitively explains the Gaussian regime appearing in ii) of Theorem 2.1.

Proof. Assertion (4.6) directly follows from the chain rule (see e.g. Proposition 1.2.3 in [32])
and the identity DsW

0,t
u = Is≤u

t−u
t−s , ∀(u, s) ∈ [0, t]2 deriving from (4.3).

Concerning (4.10), we only prove the claim for τ = 0 for notational simplicity. Usual
computations involving convexity inequalities yield that there exists C := C(k, n) ≥ 1 s.t.

Mt ≤ Ct3(|x1,n|2(k−1) + |ξ1,n|2(k−1)). (4.13)

On the other hand to prove that a lower bound at the same ordre also holds for Mt one has
to be a little more careful.

W.l.o.g. we can assume that |ξ1,n| ≥ |x1,n|. Indeed, because of the symmetry of the
Brownian Bridge and its reversibility in time (see Remark 4.1), if |ξ1,n| < |x1,n| we can

perform the computations w.r.t. to the Brownian bridge (W
0,t
u )u∈[0,t] := (W 0,t

t−u)u∈[0,t] using

the sensitivity w.r.t. to the Brownian motion (W u)u∈[0,t] := (Wt−u −Wt)u∈[0,t]. Note that

|ξ1,n| ≥ |x1,n| ⇒ |ξ1,n|∞ ≥ 1
n1/2 |x1,n|∞. Let i0 ∈ [[1, n]] be the index s.t. |ξ1,n|∞ := |ξi0 |, then

|ξi0 | ≥ 1
n1/2 |xi0 |. Let us now write

Mt ≥ k2
∫ t

0
ds

(∫ t

s
du |m(u, t, x1,n, ξ1,n)|k−2

(
t− u

t
xi0 +

u

t
ξi0

)
t− u

t− s

)2

.

Observe now that for s ≥ n1/2

n1/2+1
t we have that ∀u ∈ [s, t], t−u

t xi0 +
u
t ξi0 has the sign of ξi0 .

Hence,

Mt ≥ k2
∫ t

n1/2

n1/2+1
t
ds

(∫ t

s
du

∣∣∣∣ t− u

t
xi0 +

u

t
ξi0

∣∣∣∣k−1 t− u

t− s

)2

. (4.14)
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Now, for s ≥ t
(

n1/2

n1/2+2−1

)
, we have for all u ∈ [s, t]:

∣∣∣∣ t− u

t
xi0 +

u

t
ξi0

∣∣∣∣k−1

≥
(u
t

)k−1 |ξi0 |k−1

2k−2
−
(
t− u

t

)k−1

|xi0 |k−1

≥ |ξi0 |k−1

(
n1/2

2n1/2 + 1

)k−1

. (4.15)

Equation (4.10) thus follows from (4.14), (4.15) and (4.13).
Concerning the remainders we get that there exists C3 := C3(n, k), C4 := C4(n, k) s.t.:

|MR
1 (s, t, x1,n, ξ1,n)|2 ≤ C3(t− s)2|ξ1,n|2(k−1) sup

u∈[s,t]
|W 0,t

u |2|ξ1,n|−2,

∀i ∈ [[2, k/2]], |Mi(s, t, x1,n, ξ1,n)|2 ≤ C4(t− s)2|ξ1,n|2(k−1)

{
sup

u∈[s,t]
|W 0,t

u |2(2i−1)|ξ1,n|−2(2i−1)

+ sup
u∈[s,t]

|W 0,t
u |2(i−1)|ξ1,n|−2(i−1)

}
. (4.16)

From (4.8) and a convexity inequality, we derive |R(s, t, x1,n, ξ1,n)|2 ≤ k
2 (|M

R
1 (s, t, x1,n, ξ1,n)|2+∑k/2

i=2 |Mi(s, t, x1,n, ξ1,n)|2). Thus, from (4.16), (4.9), we obtain that there exists C(k, n, q)
s.t. for all τ ∈ [0, t]:

E[|Rτ,t|q]1/q ≤ C(k, n, q)(t− τ)3|ξ1,n|2(k−1)

{ k/2∑
i=1

E[| sup
u∈[τ,t]

|W 0,t
u |2(2i−1)|ξ1,n|−2(2i−1)|q]1/q

+

k/2∑
i=2

E[| sup
u∈[τ,t]

|W 0,t
u |2(i−1)|ξ1,n|−2(i−1)|q]1/q

}
,

which, thanks to Proposition 4.2, gives (4.11).
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On the other hand, from (4.10) and the previous convexity inequality for R we get:

P[κMτ,t ≤ Rτ,t] ≤ P
[
C−1(t− τ)3|ξ1,n|2(k−1)κ ≤ k

2

[∫ t

τ
ds|MR

1 (s, t, x1,n, ξ1,n)|2

+

k/2∑
i=2

∫ t

τ
ds|Mi(s, t, x1,n, ξ1,n)|2

]]

≤ P

[(
2

k

)2

C−1(t− τ)3|ξ1,n|2(k−1)κ ≤
∫ t

τ
ds|MR

1 (s, t, x1,n, ξ1,n)|2
]

+

k/2∑
i=2

P

[(
2

k

)2

C−1(t− τ)3|ξ1,n|2(k−1)κ ≤
∫ t

τ
ds|Mi(s, t, x1,n, ξ1,n)|2

]
(4.16)

≤ P

[(
2

k

)2

C−1(t− τ)3|ξ1,n|2(k−1)κ ≤ C3

3
(t− τ)3|ξ1,n|2(k−1) sup

u∈[τ,t]
|W 0,t

u |2|ξ1,n|−2

]

+

k/2∑
i=2

P

[(
2

k

)2

C−1κ ≤ C4

3

{(
supu∈[τ,t] |W

0,t
u |

|ξ1,n|

)2(2i−1)

+

(
supu∈[τ,t] |W

0,t
u |

|ξ1,n|

)2(i−1)}]
.

Equation (4.12) then follows from Proposition 4.2. �

4.3 Control of the weights

Now to exploit Corollary 3.7 to give estimates on pYt we need to have bounds on the Malliavin
weights. Formula (3.4) involves two kinds of terms: the inverse of the Malliavin Matrix and
the Ornstein-Uhlenbeck operator. Lemma 4.3 provides tools to analyze the Malliavin matrix.
Concerning the Ornstein-Uhlenbeck operator we will rely on the chaos expansion techniques
introduced in Section 3.3.

4.3.1 “Gaussian” regime

In this section we assume that |x1,n| ∨ |ξ1,n| ≥ Kt1/2, for K := K(n, d) sufficiently large.
That is we suppose that the starting or the final point of the non-degenerate component has
greater norm than the characteristic time-scale t1/2. In this case, we show below that the
dominating term in the Malliavin derivative is the one associated to the non-random term
MD

1 in (4.7). This term corresponds to the Malliavin derivative of a Gaussian process. This
justifies the terminology “Gaussian” regime.

In order to give precise asymptotics on the density of Yt, the crucial step consists in
controlling the norm of ΓYt := γ−1

Yt
in Lq(Ω), q ∈ [1,+∞) spaces.

Lemma 4.5 (Estimates on the Malliavin covariance) Assume that |x1,n|∨|ξ1,n| ≥ Kt1/2.
Then, for all q ∈ [1,+∞) there exists Cq,4.5 := Cq,4.5(n, k,K) ≥ 1 s.t.

C−1
q,4.5

(|x1,n|2(k−1) + |ξ1,n|2(k−1))t3
≤ ∥ΓYt∥q ≤

Cq,4.5

(|x1,n|2(k−1) + |ξ1,n|2(k−1))t3
.
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Proof. As in Lemma 4.3, we assume, without loss of generality, that |ξ1,n| ≥ |x1,n|. To give
the Lq estimates of the Malliavin derivative we recall the definition of Mt given in (4.9), and
we use the following partition:

E[|ΓYt |q] =
∑
m∈N

E[|ΓYt |qIΓYt∈[
4m
Mt

,
4(m+1)

Mt
]
] ≤(

4

Mt

)q

+
∑
m≥1

(
4(m+ 1)

Mt

)q

P[γYt ≤
Mt

4m
]. (4.17)

Equation (4.10) in Lemma 4.3 provides us with an useful bound for Mt. We next give
estimates of P

[
γYt ≤ Mt

4m

]
, m ≥ 1 in the spirit of Bally [1].

Introduce tm := inf{v ∈ [0, t] : Mv,t ≤ Mt/m}. We first show that there exists m0 ∈ N
and C := C(n, k) such that tm ≥ t(1− Cm−1/3) for all m ≥ m0. From (4.10) we obtain

tm ≥ inf{v ∈ [0, t] : Mv,t ≤ Ct3(|x1,n|2(k−1) + |ξ1,n|2(k−1))/m}
≥ inf{v ∈ [0, t] : Mv,t ≤ 2Ct3|ξ1,n|2(k−1)/m} =: tm,

recalling we have assumed |ξ1,n| ≥ |x1,n| for the last inequality. Equations (4.14) and (4.15)

also yield that there exists C2 := C2(n, k) s.t. for all v ≥ n1/2

n1/2+2−1 t,

Mv,t ≥ C2(t− v)3|ξ1,n|2(k−1).

Note that tm → t as m → +∞, then there exists m such that tm ≥ n1/2

n1/2+2−1 t for every

m ≥ m, and the above inequality holds for every v ∈ [tm, t]. Set C := (2C/C2)
1/3, and

m0 = ⌊C3⌋ ∨m. For every m ≥ m0 we have that:

P
[
γYt ≤

Mt

4m

]
≤ P

[∫ t

tm

ds|(MD
1 +R)(s, t, x1,n, ξ1,n)|2 ≤

Mt

4m

]
≤ P

[
1

2

∫ t

tm

ds|MD
1 (s, t, x1,n, ξ1,n)|2 −

∫ t

tm

ds|R(s, t, x1,n, ξ1,n)|2 ≤
Mt

4m

]
≤ P

[
Mtm,t

4
≤ Rtm,t

]
≤ c(n, k) exp

(
− |ξ1,n|2m1/3

16Cc(n, k)t

)
, (4.18)

using (4.12) for the last inequality. Plugging this control into (4.17), using once again (4.10)
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we derive that there exists C3 := C3(n, k), (C4, C5) := (C4, C5)(n, k, q) s.t.:

E[|ΓYt |q] ≤
(

4Cm2
0

t3|ξ1,n|2(k−1)

)q

+ C3

∑
m≥m0

(
4C(m+ 1)

t3|ξ1,n|2(k−1)

)q

exp

(
−C−1

3

|ξ1,n|2m1/3

t

)

≤
(

4Cm2
0

t3|ξ1,n|2(k−1)

)q

+

(
C3(8C)

q

|ξ1,n|(2(k−1)+6)q

) ∑
m≥m0

(
m1/3|ξ1,n|2

t

)3q

exp

(
−C−1

3

|ξ1,n|2m1/3

t

)

≤
(

4Cm2
0

t3|ξ1,n|2(k−1)

)q

+
C4

|ξ1,n|(2k+4)q

∑
m≥m0

exp

(
−C−1

4

|ξ1,n|2m1/3

t

)

≤ C5

[
1

t3q|ξ1,n|2q(k−1)
+

1

|ξ1,n|(2k+4)q

t3

|ξ1,n|6

]
≤ C5

t3q|ξ1,n|2q(k−1)

[
1 +

t3(q+1)

|ξ1,n|6(q+1)

]
,

which for |ξ1,n| ≥ Kt1/2 gives the upper bound of the lemma.

Let us now turn to the lower bound for ∥ΓYt∥Lp(P). Write:

E[Γq
Yt
] ≥ E[Γq

Yt
IγYt≤3Mt ] ≥

1

(3Mt)q
P[γYt ≤ 3Mt] ≥

1

(3Mt)q
(1− P[γYt > 3Mt]).

From equations (4.6)-(4.8) one has P[γYt > 3Mt] ≤ P[2Mt + 2Rt > 3Mt] = P[Rt >
1
2Mt].

Now, from Lemma 4.3 equation (4.12), one gets P[γYt > 3Mt] ≤ c(n, k) exp
(
− |ξ1,n|2

4c(n,k)t

)
.

Therefore, for |ξ1,n| ≥ Kt1/2 and K large enough, we get E[Γq
Yt
] ≥ 1

2(3Mt)q
, which thanks to

(4.10) completes the proof. �

Controls of the weight for the integration by parts.

From Proposition 3.6 and Corollary 3.7, we derive

pYt(ξn+1 − xn+1) = E[HtIYt>ξn+1−xn+1 ],

Ht = −⟨DΓYt , DYt⟩L2(0,t) + ΓYtLYt = γ−2
Yt

⟨DγYt , DYt⟩L2(0,t) + ΓYtLYt

:= H1
t +H2

t , (4.19)

using the chain rule for the last but one identity.
We have the following Lq(P), q ≥ 1, bounds for the random variable Ht.

Proposition 4.6 (Estimates for the Malliavin weight) Assume that |x1,n|∨|ξ1,n| ≥ Kt1/2

for K large enough. Then, for all q ∈ [1,+∞) there exists Cq,4.6 := Cq,4.6(n, k,K) ≥ 1 s.t.

∥Ht∥q ≤
Cq,4.6

(|x1,n|(k−1) + |ξ1,n|(k−1))t3/2
.
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Proof: Control of H1
t . From (4.19) we get for all given q ≥ 1,

∥H1
t ∥q := E[γ−2q

Yt
|⟨DγYt , DYt⟩L2(0,t)|q]1/q ≤ E[γ−4q

Yt
]1/2qE[|⟨DγYt , DYt⟩L2(0,t)|2q]1/2q

≤ Cq,4.5

t6(|ξ1,n|2(k−1) + |x1,n|2(k−1))2
E[|⟨DγYt , DYt⟩L2(0,t)|2q]1/2q

≤ Cq,4.5

t6(|ξ1,n|2(k−1) + |x1,n|2(k−1))2
E[|DγYt |

4q
L2(0,t)

]1/4qE[|DYt|4qL2(0,t)
]1/4q, (4.20)

using Lemma 4.5 for the last but one inequality. Now, from equations (4.6), (4.8), using the
notations of Lemma 4.5,

E[|DYt|4qL2(0,t)
]1/4q = E[(

∫ t

0
ds|DsYt|2)2q]1/4q := E[γ2qYt

]1/4q

≤
(
24q−1

{
M2q

t + E[R2q
t ]
})1/4q

≤ 21−1/4q
{
M1/2

t + E[R2q
t ]1/4q

}
.

On the one hand equation (4.10) in Lemma 4.3 readily gives M1/2
t ≤ Ct3/2(|x1,n|k−1 +

|ξ1,n|k−1). On the other hand, equation (4.12) of the same Lemma yields

E[|Rt|2q]1/4q ≤ C(k, q)
(
t3/2
(
|ξ1,n|k−1 ∨ |x1,n|k−1

)
K−1k/2

)
.

Hence, there exists C1 := C1(n, k, q,K) s.t.

E[|DYt|4qL2(0,t)
]1/4q = E[γ2qYt

]1/4q ≤ C1t
3/2(|ξ1,n|k−1 + |x1,n|k−1). (4.21)

In order to get a bound for ∥H1
t ∥q, it remains to control E[|DγYt |

4q
L2(0,t)

]1/4q. Equation (4.6)

and the chain rule yield that for all u2 ∈ [0, t], Du2γYt = 2
∫ t
0 du1Du2Du1Yt ×Du1Yt. We get

E[|DγYt |
4q
L2(0,t)

]1/4q ≤ 4E[γ4qYt
]1/8qE[(

∫ t

0
du1

∫ t

0
du2|Du2,u1Yt|2)4q]1/8q

≤ C2t
3/2(|ξ1,n|k−1 + |x1,n|k−1)E[|D2Yt|8qL2((0,t)2)

]1/8q, (4.22)

C2 := C2(n, k, q,K) using (4.21) for the last inequality.
With the notations of equations (4.6), (4.8) we set for all u1 ∈ [0, t],

Du1Yt :=

k/2∑
i=1

Mi(u1, t, x1,n, ξ1,n) :=

k/2∑
i=1

M i(u1, t),

for simplicity.
Observe now that for all i ∈ [[2, k/2]], u2 ∈ [0, t],

Du2M i(u1, t) = Ci
k/2

∫ t

u1∨u2

dv|m(v, t, x1,n, ξ1,n)|k−2i
{
|W 0,t

v |2 + 2⟨m(v, t, x1,n, ξ1,n),W
0,t
v ⟩
}i−2

×2i
(t− v)2

(t− u1)(t− u2)

{
2(i− 1)(W 0,t

v +m(v, t, x1,n, ξ1,n))⊗ (W 0,t
v +m(v, t, x1,n, ξ1,n))

+
{
|W 0,t

v |2 + 2⟨m(v, t, x1,n, ξ1,n),W
0,t
v ⟩
}
In
}
,

Du2M1(u1, t) = k

∫ t

u1∨u2

dv|m(v, t, x1,n, ξ1,n)|k−2 (t− v)2

(t− u1)(t− u2)
In.
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From the above equations, assuming once again w.l.o.g. |ξ1,n| ≥ |x1,n|, the arguments used
in Lemma 4.3 yield:

E[|D2Yt|8qL2((0,t)2)
]1/8q ≤ CE[|

∫
[0,t]2

du1du2(t− u1 ∨ u2)2|ξ1,n|2(k−2)

×(1 +

k/2∑
i=2

|ξ1,n|4(1−i) sup
u∈[0,t]

|W 0,t
u |4(i−1))|4q]1/8q

≤ Ct2|ξ1,n|k−2(1 +

k/2∑
i=2

|ξ1,n|2(1−i)E[ sup
u∈[0,t]

|W 0,t
u |16q(i−1)]1/8q)

Prop. 4.2
≤ Ct2|ξ1,n|k−2(1 +

k/2∑
i=2

(
t1/2

|ξ1,n|

)2(i−1)

),

where C := C(n, k, q) may change from line to line. Recalling that |ξ1,n| ∨ |x1,n| ≥ Kt1/2 we
obtain

E[|D2Yt|8qL2((0,t)2)
]1/8q ≤ Ct2|ξ1,n|k−2, C := C(n, k, q,K).

Plugging the above equation into (4.22) we derive that

E[|Dγ4qYt
|L2(0,t)]

1/4q ≤ Ct7/2|ξ1,n|2k−3,

which together with (4.21) and (4.20), eventually yields

∥H1
t ∥q ≤

C1

t|ξ1,n|k
≤ CK−1

t3/2|ξ1,n|k−1
, C1 := C1(n, k, q,K). (4.23)

Control of H2
t . From (4.19) and Lemma 4.5, for all q ≥ 1, we get

∥H2
t ∥q ≤ E[|ΓYt |2q]1/2qE[|LYt|2q]1/2q ≤

Cq

t3(|x1,n|2(k−1) + |ξ1,n|2(k−1))
E[|LYt|2q]1/2q. (4.24)

Now, since LYt = δ(DYt), the idea is to provide a chaotic representation of DYt. To do
that, we use Proposition 3.4 (Stroock’s formula see [38]). For a given u1 ∈ [0, t], recalling

Du1Yt :=

k/2∑
i=1

M i(u1, t) whereM i(u1, t) ∈ Rn is a random contribution involving Wiener chaos

up to order 2i− 1, one has:

M i(u1, t) = E[M i(u1, t)] +
2i−1∑
l=1

Il(g
i
l(., u1, t)),

Il(g
i
l(., u1, t)) :=

∫ t

0

∫ v1

0
· · ·
∫ vl−1

0
gil(v1, · · · , vl, u1, t)⊗ dWvl ⊗ · · · ⊗ dWv1 ,

gil(v1, · · · , vl, u1, t) := E[Dvl,··· ,v1M i(u1, t)] ∈ (Rn)⊗(l+1), (dWvl ⊗ · · · ⊗ dWv1) ∈ ((Rn)⊗l)∗.
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Hence, Du1Yt := g0(u1, t) +

k−1∑
l=1

Il(gl(., u1, t)), where g0(u1, t) :=

k/2∑
i=1

E[M i(u1, t)] and for all

l ∈ [[1, k − 1]], gl(v1, · · · , vl, u1, t) :=
k/2∑

i=⌊l/2⌋+1

gil(v1, · · · , vl, u1, t), so that

LYt =

∫ t

0
g0(u1, t)⊗ dWu1 +

k∑
l=2

Il(gl−1(., t)) :=
k∑

l=1

Il(gl−1(., t)). (4.25)

Similarly to the proof performed to control E[|Rt|2q]1/4q of (4.12) in Lemma 4.3, we obtain
that there exists C := C(n, k) s.t. for all l ∈ [[0, k − 1]] and for all (v1, · · · , vl, u1) ∈ [0, t]l+1:

|gl(v1, · · · , vl, u1, t)| ≤ Ct(|ξ1,n|k−(l+1) + |x1,n|k−(l+1)). (4.26)

Therefore,

E[|LYt|2q]1/2q ≤ C
k∑

l=1

t1+l/2(|ξ1,n|k−l + |x1,n|k−l)

≤ Ct3/2(|ξ1,n|k−1 + |x1,n|k−1)

{
k∑

l=1

t(l−1)/2(|ξ1,n|1−l + |x1,n|1−l)

}
,

where C := C(n, k, q) may change from line to line. Recalling that |ξ1,n| ∨ |x1,n| ≥ Kt1/2, we
derive from (4.24) that there exists C2 := C2(n, k, q,K) s.t.

∥H2
t ∥q ≤

C2

t3/2(|ξ1,n|k−1 + |x1,n|k−1)
,

which together with (4.23) and (4.19) completes the proof. �

4.3.2 Non Gaussian regime

We now consider the case |x1,n| ∨ |ξ1,n| ≤ Kt1/2, which corresponds to a diagonal regime
of the non-degenerate component w.r.t. the characteristic time scale. It turns out that
the characteristic time-scale of the density pYt(ξn+1 − xn+1) is t1+k/2. Indeed, we have the
following result.

Proposition 4.7 (Estimates for the Malliavin weight in Non Gaussian regime ) Let
K > 0 be given and assume that |x1,n| ∨ |ξ1,n| ≤ Kt1/2. For every q ≥ 1 there exists
Cq,4.7 := Cq,4.7(n, k,K) s.t.

∥Ht∥q ≤
Cq,4.7

t1+k/2
.
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Proof. For t > 0 write:

Yt =

∫ t

0

∣∣∣∣x1,n t− u

t
+ ξ1,n

u

t
+W 0,t

u

∣∣∣∣k du = t1+k/2

∫ 1

0

∣∣∣∣∣x1,nt1/2
(1− u) +

ξ1,n

t1/2
u+

W 0,t
ut

t1/2

∣∣∣∣∣
k

du

=: t1+k/2Y
t
1.

Thus:

pYt(ξn+1 − xn+1) := −∂ξn+1P[Yt > ξn+1 − xn+1] = −∂ξn+1P[Y
t
1 >

ξn+1 − xn+1

t1+k/2
]

=
1

t1+k/2
p
Y

t
1
(
ξn+1 − xn+1

t1+k/2
).

From Corollary 3.7 (Malliavin representation of the densities), we obtain:

pYt(ξn+1 − xn+1) = E[H(Yt, 1)IYt>ξn+1−xn+1 ] =
1

t1+k/2
E[H(Y

t
1, 1)IY t

1>
ξn+1−xn+1

t1+k/2

]

=
1

t1+k/2
E[H(Y

t
1, 1)IYt>ξn+1−xn+1 ],

so that Ht := H(Yt, 1) = t−(1+k/2)H(Y
t
1, 1) := t−(1+k/2)H

Y
t
1

1 . Hence, for all q ≥ 1,

∥Ht∥q ≤
1

t1+k/2
∥HY

t
1

1 ∥q. (4.27)

Now, as a consequence of the Brownian scaling we get (
W 0,t

ut

t1/2
)u∈[0,1]

(law)
= (W 0,1

u )u∈[0,1] so

that Y
t
1

(law)
= t1+k/2

∫ 1
0

∣∣∣x1,n

t1/2
(1− u) +

ξ1,n
t1/2

u+W 0,1
u

∣∣∣k du. Recalling that |x1,n

t1/2
| ∨ | ξ1,n

t1/2
| ≤ K we

derive that the usual techniques used to prove the non degeneracy of the Malliavin covariance
matrix under Hörmander’s condition (see e.g. Norris [31] or Nualart [32]) yield that there

exists Cq := Cq(n, k,K) ∈ R+∗ s.t. ∥HY
t
1

1 ∥q ≤ Cq which from (4.27) concludes the proof. The
crucial tool here is the global scaling. �

4.4 Deviation estimates

4.4.1 Off-diagonal bounds

From the Malliavin representation of the density given by (4.19), to derive off-diagonal bounds
on the density, it remains to give estimates on P[Yt > ξn+1 − xn+1].

Lemma 4.8 (Off-diagonal bounds) Let Uk
t (x, ξ) := ξn+1−xn+1− 2k−1

k+1 (|x1,n|
k + |ξ1,n|k)t,

and assume that Uk
t (x, ξ) > 0. Then, there exists C4.8 := C4.8(n, k) s.t.

(i) If |x1,n| ∨ |ξ1,n| ≥ Kt1/2 for a given K > 0,

P[Yt > ξn+1 − xn+1] ≤ C4.8

{
exp

(
−C−1

4.8

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)2t3

)

+exp

(
−C−1

4.8

|x1,n|2 + |ξ1,n|2

t

) k/2∑
i=1

exp

(
−C−1

4.8

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)}
.
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(ii) If |x1,n| ∨ |ξ1,n| ≤ Kt1/2 for the same previous K,

P[Yt > ξn+1 − xn+1] ≤ C4.8

{
exp

(
−C−1

4.8

Uk
t (x, ξ)

2

tk+2

)
+

k/2∑
i=1

exp

(
−C−1

4.8

Uk
t (x, ξ)

1/i

tk/(2i)+1/i

)}
.

Proof. We only prove point (i), the second point can be derived in a similar way. According
with (4.5), we first decompose Yt as

Yt =

∫ t

0
|m(u, t, x1,n, ξ1,n)|kdu+Mk

t (x1,n, ξ1,n) +Rk
t (x1,n, ξ1,n)

where

Mk
t (x1,n, ξ1,n) := k

∫ t
0 |m(u, t, x1,n, ξ1,n)|k−2⟨m(u, t, x1,n, ξ1,n),W

0,t
u ⟩du,

Rk
t (x1,n, ξ1,n) :=

k
2

∫ t
0 |m(u, t, x1,n, ξ1,n)|k−2|W 0,t

u |2du

+

k/2∑
i=2

Ci
k/2

∫ t

0
|m(u, t, x1,n, ξ1,n)|k−2i(2⟨m(u, t, x1,n, ξ1,n),W

0,t
u ⟩+ |W 0,t

u |2)idu,

then we have

P[Yt > ξn+1 − xn+1] = P[Mk
t (x1,n, ξ1,n) +Rk

t (x1,n, ξ1,n) >

ξn+1 − xn+1 −
∫ t
0 |m(u, t, x1,n, ξ1,n)|kdu].

Note that all the terms in Rk
t (x1,n, ξ1,n) have characteristic time scales that are in small time

negligible with respect to the one of the Gaussian contribution Mk
t (x1,n, ξ1,n). Moreover

Mk
t (x1,n, ξ1,n) ≤ 2k−2(|x1,n|k−1 + |ξ1,n|k−1)t sup

u∈[0,t]
|W 0,t

u | =: M̃k
t (x1,n, ξ1,n).

Since by assumption Uk
t (x, ξ) < ξn+1 − xn+1 −

∫ t
0 |m(u, t, x1,n, ξ1,n)|kdu, one gets:

P[Yt > ξn+1 − xn+1] ≤ P[(M̃k
t +Rk

t )(x1,n, ξ1,n) > Uk
t (x, ξ)] ≤

P[2M̃k
t (x1,n, ξ1,n) > Uk

t (x, ξ)]

+ P[(M̃k
t +Rk

t )(x1,n, ξ1,n) > Uk
t (x, ξ)]

1/2

×P[Rk
t (x1,n, ξ1,n) ≥ M̃k

t (x1,n, ξ1,n)]
1/2. (4.28)

Standard computations, similar to the ones performed to prove the deviation estimate in
(4.12) in Lemma 4.3, give that there exist C1 := C1(k), C2 := C2(n, k) ≥ 1 s.t.

P[Rk
t (x1,n, ξ1,n) ≥ M̃k

t (x1,n, ξ1,n)] ≤ (k − 1)P[ sup
u∈[0,t]

|W 0,t
u | ≥ C1{|x1,n|+ |ξ1,n|}]

≤ C2 exp

(
−C−1

2

|x1,n|2 + |ξ1,n|2

t

)
,

P[M̃k
t (x1,n, ξ1,n) > Uk

t (x, ξ)/2] ≤ C2 exp

(
−C−1

2

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)t3

)
. (4.29)
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On the other hand, we have:

P[(M̃k
t +Rk

t )(x1,n, ξ1,n) ≥ Uk
t (x, ξ)]

≤ P[M̃k
t (x1,n, ξ1,n) ≥

1

2
Uk
t (x, ξ)] + P[Rk

t (x1,n, ξ1,n) ≥
1

2
Uk
t (x, ξ)]. (4.30)

Now,

P[Rk
t (x1,n, ξ1,n) ≥

1

2
Uk
t (x, ξ)]

≤ P[
2(k−3)∨0k

2(k − 1)
{|x1,n|k−2 + |ξ1,n|k−2}t sup

u∈[0,t]
|W 0,t

u |2 ≥ 1

2(k − 1)
Uk
t (x, ξ)]

+

k/2∑
i=2

{
P[Ci

k/2

2k−i−2

k − 2i+ 1
{|x1,n|k−2i + |ξ1,n|k−2i}t sup

u∈[0,t]
|W 0,t

u |2i ≥ 1

2(k − 1)
Uk
t (x, ξ)]

+P[Ci
k/2

2k+i−2

k − i+ 1
{|x1,n|k−i + |ξ1,n|k−i}t sup

u∈[0,t]
|W 0,t

u |i ≥ 1

2(k − 1)
Uk
t (x, ξ)]

}

:= P1 +

k/2∑
i=2

(P i
2 + P i

3).

(4.31)

From Proposition 4.2 one gets that there exists C3 := C3(k, n) ≥ 1 s.t.

P1 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

{|x1,n|k−2 + |ξ1,n|k−2}t2

)
, ∀i ∈ [[2, k/2]],

P i
2 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)
,

P i
3 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

2/i

{|x1,n|k−i + |ξ1,n|k−i}2/it1+2/i

)
. (4.32)

Hence, plugging (4.32) in (4.31) we derive the claim from (4.31), (4.30), (4.29) and (4.28).�

4.4.2 Auxiliary deviation estimates

Still from the Malliavin representation of the density given by (4.19), when ξn+1 − xn+1 is
small, that is when for the degenerate component the starting and final points are close, we
have to give estimates on P[Yt ≤ ξn+1 − xn+1] (small and moderate deviations).

Proposition 4.9 There exist constants (c1, c2) := (c1, c2)(n, k) s.t. for all (x1,n, ξ1,n) ∈
(Rn\{0})2, ξn+1 > xn+1 and t ≥ 2k+3 ξn+1−xn+1

|x1,n|k+|ξ1,n|k
:

P[Yt ≤ ξn+1 − xn+1] ≤ c1 exp

(
−c2

|x1,n|2+k + |ξ1,n|2+k

ξn+1 − xn+1

)
. (4.33)
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For a given K ≥ 0, if t ≥
[
(ξn+1 − xn+1)

3
4(64K)k

]2/(k+2)
, and |x1,n| ∨ |ξ1,n| ≤ Kt1/2, then

there exist (c1, c2) := (c1, c2)(n, k,K):

P[Yt ≤ ξn+1 − xn+1] ≤ c1 exp

(
−c2

t1+2/k

(ξn+1 − xn+1)2/k

)
. (4.34)

Proof. We first begin with the proof of (4.33). As in the previous sections, we can assume
w.l.o.g. that |x1,n| ≥ |ξ1,n|.For s ∈ [0, t], we define X̃s := x1,n

t−s
t + ξ1,n

s
t + W 0,t

s (where

(W 0,t
s )s∈[0,t] is a standard n-dimensional Brownian Bridge on [0, t]), so that Yt =

∫ t
0 |X̃s|kds.

Let us also set τ|x1,n|/2 := inf{s ≥ 0 : |X̃s| ≤ |x1,n|/2}. Consider now the event A :=

{τ|x1,n|/2 ≤ 2k ξn+1−xn+1

|x1,n|k
} and denote by AC its complementary. Observe that P[

∫ t
0 |X̃s|kds ≤

ξn+1 − xn+1, A
C ] = P[

∫ 2k
ξn+1−xn+1

|x1,n|k

0

(
|x1,n|

2

)k
ds <

∫ t
0 |X̃s|kds ≤ ξn+1 − xn+1, A

C ] = 0. Thus,

P[Yt ≤ ξn+1 − xn+1] = P[Yt ≤ ξn+1 − xn+1, A] ≤ P[A]. Now

P[A] ≤ P[ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|X̃s| ≤ |x1,n|/2]

≤ P[ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

∣∣∣∣x1,n t− s

t
+ ξ1,n

s

t

∣∣∣∣+ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

(−|W 0,t
s |) ≤ |x1,n|/2]

≤ P[|x1,n|/2 + inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

(−s
t
){|x1,n|+ |ξ1,n|} − sup

s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s | ≤ 0]

≤ P[|x1,n|(1/2−
2k+1(ξn+1 − xn+1)

|x1,n|kt
) ≤ sup

s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s |]

≤ P[|x1,n|/4 ≤ sup
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s |],

recalling |x1,n| ≥ |ξ1,n| and t ≥ 2k+3 ξn+1−xn+1

|x1,n|k
for the last two inequalities. From Proposition

4.2 we obtain:

P[Yt ≤ ξn+1 − xn+1] ≤ P[A] ≤ c1 exp

(
−c2

|x1,n|2+k

ξn+1 − xn+1

)
,

which from the assumption |x1,n| ≥ |ξ1,n| gives (4.33) up to a modification of c2.

Let us now turn to (4.34). Introduce Iβ(t) :=
∫ t
0 I|X̃s|k≤β(ξn+1−xn+1)

ds for a parameter

β > 0 to be fixed later on. Define the set Aβ := {Iβ(t) ≥ t/4}. Observe that

P[
∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ] =

P[
∫ t

0
I|X̃s|k>β(ξn+1−xn+1)

|X̃s|kds ≤
∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ]

≤ P[β(ξn+1 − xn+1)3t/4 <

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ].
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Choosing β = 4
3t we get from the above inequality P[

∫ t
0 |X̃s|kds ≤ ξn+1 − xn+1, A

C
β ] = 0.

Hence,

P[
∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1] = P[

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A 4

3t
] ≤ P[A 4

3t
]

≤ P[
∫ t

0
I
|X̃s|k≤

3(ξn+1−xn+1)

4t

ds > t/4] ≤ P[
∫ t

0
I
|X̃1

s |k≤
3(ξn+1−xn+1)

4t

ds > t/4]

≤ P[
∫ t

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)
ds > t/4], c(x, ξ, t, k) :=

(
3(ξn+1 − xn+1)

4t

)1/k

,

≤ P[
∫ t/2

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)
ds > t/8] + P[

∫ t

t/2
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)
ds > t/8]

:= P1 + P2, (4.35)

where (B0,t
s )s∈[0,t] stands for a one-dimensional Brownian bridge on [0, t]. Observing that

(B
0,t
s ) := (B0,t

t−s)s∈[0,t] is also a Brownian bridge, we get that

P2 := P[
∫ t/2

0
dsI|x1

s
t
+ξ1

t−s
t

+B
0,t
s |≤c(x,ξ,t,k)

ds > t/8]

= P[
∫ t/2

0
dsI|x1

s
t
+ξ1

t−s
t

+B0,t
s |≤c(x,ξ,t,k)

ds > t/8].

Since we assumed |x1| ∨ |ξ1| ≤ Kt1/2, |x1| and |ξ1| have at most the same magnitude so that
P1 and P2 can be handled exactly in the same way. Let us deal with P1. The occupation
time formula for semimartingales (see Chapter 6 in [34]) yields∫ t/2

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)
ds =

∫ c(x,ξ,t,k)

−c(x,ξ,t,k)
dzLz

t/2,

where Lz
t/2 stands for the local time at level z and time t/2 of the process (x1

t−s
t + ξ1

s
t +

B0,t
s )s∈[0,t]. From the definition of P1 in (4.35):

P1 ≤ P[ sup
z∈[−c(x,ξ,t,k),c(x,ξ,t,k)]

Lz
t/2 × 2c(x, ξ, t, k) >

t

8
]

= P[ sup
z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

L
z
1/2 >

t1/2

16c(x, ξ, t, k)
], (4.36)

where L
z
1/2 stands for the local time at level z and time 1/2 for the scalar process

(Xu)u∈[0,1] :=

(
x1

t1/2
(1− u) +

ξ1

t1/2
u+

B0,t
ut

t1/2

)
u∈[0,1]

(law)
=

(
x1

t1/2
(1− u) +

ξ1

t1/2
u+B0,1

u

)
u∈[0,1]

.

The last equality in (4.36) is a consequence of the scaling properties of the local time. From

Tanaka’s formula for semimartingales L
z
1/2 = |X1/2 − z| − |X0 − z| −

∫ 1/2
0 sgn(Xs − z)dXs.
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Denoting with a slight abuse of notation (
B0,t

ut

t1/2
)u∈[0,1] = (B0,1

u )u∈[0,1], we have the following

differential dynamics for Xu:

dXu = −x1 − ξ1

t1/2
du+ dB0,1

u = −Xu − ξ1
1− u

du+ dBu,

where (Bu)u∈[0,1] is a standard scalar Brownian motion.
Therefore, from equation (4.36) and the usual differential dynamics for the Brownian

bridge:

P1 ≤ P[
|ξ1 − x1|
2t1/2

+ |B0,1
1/2|

+ sup
z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

∣∣∣∣∣
∫ 1/2

0
sgn(Xs − z)(−x1 − ξ1

t1/2
ds+ dB0,1

s )

∣∣∣∣∣ ≥ t1/2

8c(x, ξ, t, k)
]

≤ P[
|ξ1 − x1|
t1/2

+ |B0,1
1/2|+∫ 1/2

0
ds

|B0,1
s |

1− s
+ sup

z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(Xs − z)dBs| ≥

t1/2

16c(x, ξ, t, k)
]

≤ P[2K + 3 sup
s∈[0,1/2]

|B0,1
s |+ sup

z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(Xs − z)dBs| ≥

t1/2

16c(x, ξ, t, k)
].

Now from the definition of c(x, ξ, t, k) in (4.35), for t ≥
[
(ξn+1 − xx+1)

3
4(64K)k

]2/(k+2)
one

has t1/2

16c(x,ξ,t,k) − 2K ≥ t1/2

32c(x,ξ,t,k) . Thus

P1 ≤ P[3 sup
s∈[0,1/2]

|B0,1
s | ≥ t1/2

64c(x, ξ, t, k)
]

+P[ sup
z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(Xs − z)dBs| ≥

t1/2

64c(x, ξ, t, k)
].

Setting for all t ∈ [0, 1/2], Mt :=
∫ t
0 sgn(Xs − z)dBs, Mt := B̃⟨M⟩t = B̃t (i.e. B̃ is the

Dambis-Dubbins-Schwarz Brownian motion associated to M). Hence, from Proposition 4.2
we derive the announced bound for P1. Since P2 can be handled in a similar way, the claim
then follows from equation (4.35).

4.5 Final derivation of the upper-bounds in the various regimes

In this section we put together our previous estimates in order to derive the upper bounds of
Theorem 2.1 in the various regimes.
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4.5.1 Derivation of the Gaussian upper bounds

In this paragraph we assume |x1,n| ∨ |ξ1,n| ≥ Kt1/2 for K large enough. We also suppose
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C where c := c(k) = 2+ 2k−1

k+1 and C is fixed. From Corollary 3.7

(representation of the density), Proposition 4.6 (controls of the weight in the integration by
part) and Lemma 4.8 (deviation bounds), we have that there exists C := C(n, k,K,C) ≥ 1,

s.t. setting Uk
t (x, ξ) := ξn+1 − xn+1 − 2k−1

k+1 (|x1,n|
k + |ξ1,n|k)t as in Lemma 4.8 one has:

p(t, x, ξ) ≤
C exp

(
− |ξ1,n−x1,n|2

2t − C−1 Uk
t (x,ξ)

2

(|x1,n|k−1+|ξ1,n|k−1)2t3

)
tn/2+3/2(|x1,n|k−1 + |ξ1,n|k−1)

. (4.37)

Remark 4.10 The above result means that the Gaussian regime holds if the final point ξ1,n
of the degenerate component has the same order as the “mean” transport term mt(x, ξ) :=

xn+1 +
2k−1

k+1 (|x1,n|
k + |ξ1,n|k)t (moderate deviations). A similar lower bound holds true, see

Lemma 4.11.

4.5.2 Derivation of the heavy-tailed upper bounds

We here assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≥ C where c := c(k) = 2 + 2k−1

k+1 and C is as in

the previous paragraph.
If |x1,n| ∨ |ξ1,n| ≤ Kt1/2 (K being as in the previous paragraph), then Corollary 3.7,

Proposition 4.7 and Lemma 4.8 yield that there exists C := C(n, k) ≥ 1 s.t.

p(t, x, ξ) ≤ C

t(n+k)/2+1
exp

(
−|ξ1,n − x1,n|2

2t
− C−1 (U

k
t (x, ξ))

2/k

t1+2/k

)
. (4.38)

On the other hand if |x1,n| ∨ |ξ1,n| ≥ Kt1/2, then Corollary 3.7, Proposition 4.6 and Lemma

4.8 yield that there exists C̃ := C̃(n, k) ≥ 1 s.t.

p(t, x, ξ) ≤ C̃

tn/2+3/2(|x1,n|k−1 + |ξ1,n|k−1)
exp

(
−|ξ1,n − x1,n|2

2t
− C̃−1U

k
t (x, ξ)

2/k

t1+2/k

)

≤ C̃

Kk−1t(n+k)/2+1
exp

(
−|ξ1,n − x1,n|2

2t
− C̃−1U

k
t (x, ξ)

2/k

t1+2/k

)
.

Hence, up to a modification of C, the control given by (4.38) holds for all off-diagonal cases.

4.5.3 Moderate deviations of the degenerate component

In this paragraph we suppose 0 < ξn+1 − xn+1 ≤ Kt1+k/2, for K sufficiently small. This
means that the deviation of the degenerate component is small w.r.t. its characteristic time
scale. From Corollary 3.7, Propositions 4.6 and 4.7 and Proposition 4.9 we derive similarly
to the previous paragraph that there exists C := C(n, k,K) s.t.

p(t, x, ξ) ≤
C exp

(
− |ξ1,n−x1,n|2

2t − C−1
{

|x1,n|2+k+|ξ1,n|2+k

ξn+1−xn+1
+ t1+2/k

(ξn+1−xn+1)2/k

})
t(n+k)/2+1

. (4.39)
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4.6 Gaussian lower bound on the compact sets of the metric

We conclude this section with a proof of a lower bound for the density on the compact sets
of the metric associated to the Gaussian regime in Theorem 2.1. A similar feature already
appears in the appendix of [19].

Lemma 4.11 Assume that |x1,n| ∨ |ξ1,n| ≥ Kt1/2, K ≥ K0 := K0(n, k) and that for a given

C ≥ 0 we have
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C where c := c(k) is fixed. Then, there exists

C4.11 := C4.11(n, k, C) s.t.

C4.11

(|x1,n|k−1 + |ξ1,n|k−1)t3/2
≤ pYt(ξn+1 − xn+1).

Remark 4.12 The condition in the Lemma means that the deviation ξn+1 − xn+1 has ex-
actly the same order as the transport term t(|x1,n|k + |ξ1,n|k), up to a neglectable fluctuation
corresponding to the variance of the Gaussian contribution in Yt.

Proof. We assume w.l.o.g. that ξn+1 − xn+1 − ct(|x1,n|k + |ξ1,n|k) ≥ 0 and |ξ1,n| ≥ |x1,n|.
From (4.19) we recall:

pYt(ξn+1 − xn+1) = E[HtIYt≥ξn+1−xn+1 ],

Ht := H1
t +H2

t := γ−2
Yt

⟨DγYt , DYt⟩L2(0,t) + ΓYtLYt.

Recalling the chaos decomposition of LYt introduced in Proposition 4.6, see equation (4.25),
we get:

pYt(ξn+1 − xn+1) ≥ E[H2
t IYt≥ξn+1−xn+1 ]− E[|H1

t |] ≥ E[
I1(g0(., t)

γYt

IYt≥ξn+1−xn+1 ]

−

{
E
[
|
∑k

l=2 Il(gl−1(., t))|
γYt

]
+

C1

t|ξ1,n|k

}
,

using the bound for E[|H1
t |] given by equation (4.23), with C1 := C1(n, k, 1,K), in the last

inequality. From equation (4.26), there exists C2 := C2(n, k), E[|
∑k

l=2 Il(gl−1(., t))|2]1/2 ≤

C2t
3/2|ξ1,n|k−1

∑k
l=2

(
t1/2

|ξ1,n|

)l−1
≤ (k−1)C2

K t3/2|ξ1,n|k−1, recalling |ξ1,n| ≥ Kt1/2 for the last

inequality. Also I1(g0(., t)) =
∫ t
0 E[M1(u, t)]dWu + Rt

0 where E[|Rt
0|2]1/2 ≤ C2

K t3/2|ξ1,n|k−1.
From (4.5), we write:

Yt =

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k + k

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k−2⟨m(u, t, x1,n, ξ1,n),W

0,t
u ⟩

+Rk
t (x1,n, ξ1,n) =: (mk

t +Gk
t +Rk

t )(x1,n, ξ1,n) =: mk
t +Gk

t +Rk
t ,

for simplicity. Proposition 4.6 then yields:

pYt(ξn+1 − xn+1) ≥ E
[∫ t

0 E[M1(u, t)]dWu

γYt

Imk
t+Gk

t+Rk
t ≥ξn+1−xn+1

]
−

{
C2C2kt

3/2|ξ1,n|k−1

K|ξ1,n|2(k−1)t3
+

C1

Kt3/2|ξ1,n|k−1

}
:= pYt,1(ξn+1 − xn+1)− r1(t, x, ξ).
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From the martingale representation theorem and the above computations we identify Gk
t =∫ t

0 E[M1(u, t)]dWu. Still from Proposition 4.6 we get:

pYt(ξn+1 − xn+1) ≥ E
[
Gk

t

γYt

IGk
t+Rk

t ≥ξn+1−xn+1−mk
t
I|Rk

t |≤|Gk
t |/2

]
−
[
C3P[|Rk

t | > |Gk
t |/2]1/2

(|x1,n|k−1 + |ξ1,n|k−1)t3/2
+ r1(t, x, ξ)

]
= pYt,2(ξn+1 − xn+1)− r2(t, x, ξ),

where C3 := C3(n, k). One easily gets that there exists c := c(k) > 0, mk
t := mk

t (x1,n, ξ1,n) ≥
ct(|x1,n|k + |ξ1,n|k).Thus, setting Uk

t (x, ξ) := ξn+1 − xn+1 − ct(|x1,n|k + |ξ1,n|k) and recalling
as well that Uk

t (x, ξ) ≥ 0, one obtains that on the event {Gk
t +R

k
t ≥ Uk

t (x, ξ), |Rk
t | ≤ |Gk

t |/2},
Gk

t ≥ 0. Hence:

pYt(ξn+1 − xn+1) ≥ E[
Gk

t

γYt

IGk
t−|Rk

t |≥Uk
t (x,ξ)≥0I|Rk

t |≤|Gk
t |/2

]− r2(t, x, ξ)

≥ E[
Gk

t

γYt

IGk
t≥2Uk

t (x,ξ)≥0I|Rk
t |≤Gk

t /2
]− r2(t, x, ξ)

≥ E[
Gk

t

3Mt
IGk

t≥2Uk
t (x,ξ)≥0I|Rk

t |≤Gk
t /2

IγYt≤3Mt ]−
C3P[γYt > 3Mt]

1/2

|ξ1,n|k−1t3/2

−r2(t, x, ξ)

≥ E[
Gk

t

3Mt
IGk

t≥2Ct3/2(|x1,n|k−1+|ξ1,n|k−1)I|Rk
t |≤Gk

t /2
IγYt≤3Mt ]− r3(t, x, ξ)

≥ C−12CP[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | ≤ Gk
t /2]

3t3/2(|x1,n|k−1 + |ξ1,n|k−1)

−C4P[γYt > 3Mt]
1/2

t3/2|ξ1,n|k−1
− r3(t, x, ξ), (4.40)

where we used that Uk
t (x, ξ) ≤ Ct3/2(|x1,n|k−1 + |ξ1,n|k−1) for the last but one inequality

(compact sets of the metric). The constant C is the one appearing in (4.10). To conclude it
suffices to prove that

P := P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | ≤ |Gk
t |/2]] ≥ C̃, (4.41)

|r4(t, x, ξ)| :=
C4P[γYt > 3Mt]

1/2

t3/2|ξ1,n|k−1
+ r3(t, x, ξ) ≤

C−1CC̃

3t3/2(|x1,n|k−1 + |ξ1,n|k−1)
. (4.42)

Indeed, plugging (4.41) and (4.42) into (4.40) gives the statement. Let us first prove (4.41).
Write:

P ≥ P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)]

−P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | > |Gk
t |/2]

≥ P[N (0, 1) ≥ 2Č]− P[|Rk
t | ≥ Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)], Č := Č(n, k).
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Thus, similarly to the proof of (4.12) in Lemma 4.3 we can show that there exists C5 :=

C5(n, k) ≥ 1 s.t. P[|Rk
t | ≥ Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)] ≤ C5 exp

(
−C−1

5
|x1,n|2+|ξ1,n|2

t

)
. Under

the current assumptions, using standard controls on the Gaussian distribution function, this
gives (4.41) for C̃ := C̃(n, k) for K large enough.

Recall now that |r4(t, x, ξ)| ≤ 1
t3/2|ξ1,n|k−1

(
C1+C2C2k

K + (C3 + C4)P[γYt > 3Mt]
1/2 +

C3P[|Rk
t | > |Gk

t |/2]1/2
)
:=
∑3

i=1 r4i(t, x, ξ). Under the current assumptions, we derive that

for K large enough, r41(t, x, ξ) ≤ C−1CC̃
9t3/2(|x1,n|k−1+|ξ1,n|k−1)

. On the other hand, writing P[|Rk
t | >

|Gk
t |/2]1/2 ≤ (P[|Rk

t | > Ĉ
2 (|x1,n|

k−1 +|ξ1,n|k−1)t3/2]+P[|Gk
t | ≤ Ĉ(|x1,n|k−1+ |ξ1,n|k−1)t3/2])1/2

we derive similarly to (4.12) (see also the proof of the lower bound in Lemma 4.5) that

r43(t, x, ξ) ≤ C−1CC̃
9t3/2(|x1,n|k−1+|ξ1,n|k−1)

taking Ĉ small enough. Eventually, the same control

holds true for r42(t, x, ξ), still from arguments similar to those used to derive (4.12). This
concludes the proof. �

5 Potential Theory and PDEs

In this section we are interested in proving Harnack inequalities for non-negative solutions to

L u(z) = 0, z = (x, t) ∈ RN+1, (5.1)

with L defined in (1.2). Specifically, we consider any open set O ⊆ RN+1, and any z ∈ O,
and we aim to show that there exists a compact K ⊂ O and a positive constant CK such that

sup
K
u ≤ CK u(z), (5.2)

for every positive solution u to L u = 0. We say that a set
{
z0, z1, . . . , zk

}
⊂ O is a Harnack

chain of lenght k if
u(zj) ≤ Cj u(zj−1), for j = 1, . . . , k,

for every positive solution u of L u = 0, so that we get

u(zk) ≤ C1C2 . . . Ck u(z0). (5.3)

In order to construct Harnack chains, and to have an explicit lower bound for the densities
considered in this article, we will prove invariant Harnack inequalities w.r.t. a suitable Lie
group structure. By exploiting the properties of homogeneity and translation invariance of
the Lie group, we will find Harnack chains with the property that every Cj in (5.3) agrees
with the constant CK in (5.2). As a consequence we find u(zk) ≤ Ck

K u(z0), and the bound
will depend only on the lenght of the Harnack chain connecting z0 to zk.

Let us now recall some basic notations concerning homogeneous Lie groups (we refer to
the monograph [7] by Bonfiglioli, Lanconelli and Uguzzoni for an exhaustive treatment). Let
◦ be a given group law on RN+1 and suppose that the map (z, ζ) 7→ ζ−1 ◦ z is smooth. Then
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G = (RN+1, ◦) is called a Lie group. Moreover, G is said homogeneous if there exists a family
of dilations (δλ)λ>0 which defines an automorphism of the group, i.e.,

δλ(z ◦ ζ) = (δλz) ◦ (δλζ) , for all z, ζ ∈ RN+1 and λ > 0.

We also make the following assumption.

[L] L is Lie-invariant with respect to the Lie group G =
(
RN+1, ◦, (δλ)λ>0

)
, i.e.

i) Y1, . . . , Yn and Z are left-invariant with respect to the composition law of G, i.e.

Yj (u (ζ ◦ ·)) = (Yju) (ζ ◦ ·) , j = 1, . . . , n,

Z (u (ζ ◦ ·)) = (Zu) (ζ ◦ ·) ,

for every function u ∈ C∞(RN+1), and for any ζ ∈ RN+1;

ii) Y1, . . . , Yn are δλ-homogeneous of degree one and Z is δλ-homogeneous of degree
two:

Yj (u (δλz)) = λ (Yju) (δλz) , j = 1, . . . , n,

Z (u (δλz)) = λ2 (Zu) (δλz) ,

for every function u ∈ C∞(RN+1), and for any z ∈ RN+1, λ > 0.

To illustrate Property [L] we recall the Lie group structure of the Kolmogorov operator
corresponding to k = 1 in (1.4).

Example 5.1 (Kolmogorov operators) L := 1
2∆x1,n +

∑n
i=1 xi∂x2 − ∂t. The Kol-

mogorov group is K =
(
Rn+2, ◦, δλ

)
, where

(x, t) ◦ (ξ, τ) =
(
x1,n + ξ1,n, xn+1 + ξn+1 −

n∑
i=1

xiτ, t+ τ
)
, δλ(x, t) =

(
λx1,n, λ

3xn+1, λ
2t
)
.

Clearly, L can be written as in (1.2) with Yi = ∂xi , i ∈ [[1, n]], and Z =
∑n

i=1 xi∂xn+1 − ∂t,
and satisfies [L].

It is known that the composition law ◦ is always a sum with respect to the t variable (see
Propostion 10.2 in [24]). Moreover, the family (δλ)λ>0 acts on RN+1 as follows:

δλ(x1, x2, . . . , xN , t) =
(
λσ1x1, λ

σ2x2, . . . , λ
σNxN , λ

2t
)
, for every (x, t) ∈ RN+1,

where σ = (σ1, σ2, . . . , σN ) ∈ NN is a multi-index. The natural number Q =
∑N

k=1 σk + 2
is called the homogeneous dimension of G with respect to δλ. We shall assume that Q ≥ 3.
Observe that the diagonal decay of the heat kernel on the homogeneous Lie group is given
by the characteristic time scale t−(Q−2)/2. For the above example we have Q = n + 3 + 2,
matching the diagonal exponent in (1.5) (Q− 2)/2 = (n+ 3)/2.
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Write the operator L as follows

L =

N∑
i,j=1

ai,j(x)∂xi,xj +

N∑
j=1

bj(x)∂xj − ∂t,

for suitable smooth coefficients ai,j ’s and bj ’s only depending on the vector fields Y0, . . . , Yn.
As n < N , L is strictly degenerate, since the rank(A(x)) ≤ n at every x (here A(x) :=
(ai,j(x))i,j∈[[1,n]]). In Example 5.1 we see that rank(A) never vanishes. We say that L is not
totally degenerate if

[B] for every x ∈ RN there exists ν ∈ RN \ {0} such that ⟨A(x)ν, ν⟩ > 0.

This property holds for a more general class of operators. Indeed, if L satisfies [H] and [L],
then there exists a ν ∈ RN \ {0} such that

⟨A(x)ν, ν⟩ > 0, for every x ∈ RN . (5.4)

We refer to Section 1.3 in the monograph [7] for the proof of this statement.
Fix now T > 0 and define I := [0, T ]. We call diffusion trajectory any absolutely contin-

uous curve on I such that

γ′(s) =

n∑
k=1

ωk(s)Yk(γ(s)), for every s ∈ I, (5.5)

where ω1, . . . , ωn are piecewise constant real functions. A drift trajectory is any positively
oriented integral curve of Z. We say that a curve γ : [0, T ] → RN+1 is L -admissible if it is
absolutely continuous and is a sum of a finite number of diffusion and drift trajectories.

LetO be any open subset of RN+1, and let z0 ∈ O. We define the attainable set Az0 := Az0

as the closure in O of the following set

Az0 =
{
z ∈ O : there exists an L -admissible path

γ : [0, T ] → O such that γ(0) = z0, γ(T ) = z
}
.

(5.6)

The main result of the section is the following

Theorem 5.2 Let L be an operator in the form (5.1) satisfying [H] and [L], let O ⊆ RN+1

be an open set, and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Az0) , sup
K
u ≤ CK u(z0), (5.7)

for any non-negative solutions u to L u = 0 in O. Here CK is a positive constant depending
on O,K, z0 and on L .

We recall that a Harnack inequality for operators satisfying [H] and [B] is due to Bony
(see [9]). Another result analogous to Theorem 5.2 is given in [15, Theorem 1.1] by Cinti,
Nystrom and Polidoro, assuming [L] and the following controllability condition:
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[C] for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L -admissible path γ : [0, T ] →
RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

Our Theorem 5.2 improves Bony’s one in that it gives an explicit geometric description of
the set K in (5.7). Also, it is more general than the one in [15], since [L] and [C] imply [H]
(see Proposition 10.1 in [24]).

The proof of Theorem 5.2 is based on a general result from Potential Theory. In Section
5.1 we recall the basic results of Potential Theory needed in our work, then we apply them
to operators L satifying [H] and [L]. We explicitly remark that condition [L] is not satisfied
by the Kolmogorov operators

L =
1

2
∆x1,n + |x1,n|k∂xn+1 − ∂t (5.8)

and

L =
1

2
∆x1,n +

n∑
j=1

xkj∂xn+1 − ∂t (5.9)

of the stochastic systems (1.3) and (1.4) respectively. Indeed, in both cases k commutators
are needed to fulfill Hörmander condition [H] at x1,n = 0, while only one commutator is
sufficient to span all the directions as x1,n ̸= 0, and this fact contradicts [L]–i). On the

other hand, the operators in (5.8) and (5.9) can be lifted to suitable operators L̃ = Ỹ 2
1 + Z̃,

satisfying both [H] and [L] (see (5.25)). We refer to Section 4 for more details, and we note
that our Harnack-type inequality for L , and the asymptotic lower bounds, are obtained in
Section 4 by the application of Theorem 5.2 to L̃ .

5.1 Potential Theory

For the first part of the section, we assume L to be a general abstract parabolic differential
operator satisfying [B] and [L].

Let O be any open subset of RN+1. If u : O → R is a smoothfunction such that L u = 0
in O, we say that u is L -harmonic in O. We denote by H(O) the linear space of functions
which are L -harmonic in O.

Let V be a bounded open subset of RN+1 with Lipschitz-continuous boundary. We say
that V is L -regular if, for every z0 ∈ ∂V , there exists a neighborhood U of z0 and a smooth
function w : U → R satisfying

w(z0) = 0, Lw(z0) < 0, w > 0 in V ∩ U \ {z0}.

Note that the function ψ(x, t) = 1
2 + 1

π arctan t verifies

0 ≤ ψ ≤ 1, Lψ < 0 in RN+1. (5.10)

As a first consequence of (5.10), the classical Picone’s maximum principle holds on any
bounded open set O ⊂ RN+1. Precisely, if u ∈ C2(O) satisfies

L u ≥ 0 in O, lim sup
z→ζ

u(z) ≤ 0 for every ζ ∈ ∂O,
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then u ≤ 0 in O (see e.g. Bonfiglioli and Uguzzoni [8]). Then, for every L -regular open set
V ⊂ RN+1, and for any φ ∈ C(∂V ) there exists a unique function HV

φ satisfying

HV
φ ∈ H(V ), lim

z→ζ
HV

φ (z) = φ(ζ) for every ζ ∈ ∂V. (5.11)

Moreover, HV
φ ≥ 0 whenever φ ≥ 0 (see Bauer [4] and Constantinescu and Cornea [18]).

Hence, if V is L -regular, for every fixed z ∈ V the map φ 7→ HV
φ (z) defines a linear positive

functional on C(∂V,R). Thus, the Riesz representation theorem implies that there exists a
Radon measure µVz , supported in ∂V , such that

HV
φ (z) =

∫
∂V
φ(ζ) dµVz (ζ), for every φ ∈ C(∂V,R). (5.12)

We will refer to µVz as the L -harmonic measure defined with respect to V and z.

A lower semi-continuous function u : O → ]−∞,∞] is said to be L -superharmonic in O
if u <∞ in a dense subset of O and if

u(z) ≥
∫
∂V
u(ζ) dµVz (ζ),

for every open L -regular set V ⊂ V ⊂ O and for every z ∈ V . We denote by S(O) the

set of L -superharmonic functions in O, and by S+
(O) the set of the functions in S(O)

which are non-negative. A function v : O → [−∞,∞[ is said to be L -subharmonic in O if
−v ∈ S(O) and we write S(O) := −S(O). Since the collection of L-regular sets is a basis for
the Euclidean topology (as we will see in a moment), we have S(O) ∩ S(O) = H(O).

This last property and Picone’s maximum principle are the main tools in order to show
the following criterion of L -superharmonicity for functions of class C2 (a proof can be found
in the monograph [7, Proposition 7.2.5]).

Remark 5.3 Let u ∈ C2(O). Then u is L -superharmonic if and only if L u ≤ 0 in O.

With the terminology of Potential Theory (we refer to the monographs [4, 18]), the map
RN+1 ⊇ O 7→ H(O) is said harmonic sheaf and (RN+1,H) is said harmonic space. Since
the constant functions are L -harmonic, the last statement is a consequence of the following
properties:

- the L -regular sets form a basis for the Euclidean topology (by (5.4), L is a not totally
degenerate operator, so that this statement is a consequence of [9, Corollaire 5.2]);

- H satisfies the Doob convergence property, i.e., the pointwise limit u of any increasing
sequence {un}n of L -harmonic functions, on any open set V , is L -harmonic whenever
u is finite in a dense set T ⊆ V (as in [24, Proposition 7.4], we can rely on the weak
Harnack inequality due to Bony stated in [9, Theoreme 7.1]);

- the family S(RN+1) separates the points of RN+1, i.e., for every z, ζ ∈ RN+1, z ̸= ζ,
there exists u ∈ S(RN+1) such that u(z) ̸= u(ζ).
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This last separation property is proved in Lemma 5.5. We will in fact show a stronger
result: actually, the family S+

(RN+1)∩C(RN+1) separates the points of RN+1. A harmonic
space (RN+1,H) satisfying this property is said to be a B-harmonic space.

In order to prove the separation property we use a fundamental solution Γ of L . To
prove the existence of a fundamental solution we now rely on condition [H] that we assumed
to be in force through the paper. We recall that a fundamental solution is a function Γ with
the following properties:

i) the map (z, ζ) 7→ Γ(z, ζ) is defined, non-negative and smooth away from the set {(z, ζ) ∈
RN+1 × RN+1 : z ̸= ζ};

ii) for any z ∈ RN+1,Γ(·, z) and Γ(z, ·) are locally integrable;

iii) for every ϕ ∈ C∞
0 (RN+1) and z ∈ RN+1 we have

L

∫
RN+1

Γ(z, ζ)ϕ(ζ) dζ =

∫
RN+1

Γ(z, ζ)L ϕ(ζ) dζ = −ϕ(z);

iv) L Γ(·, ζ) = −δζ (Dirac measure supported at ζ);

v) if we define Γ∗(z, ζ) := Γ(ζ, z), then Γ∗ is the fundamental solution for the formal adjoint
L ∗ of L , satisfying the dual statements of iii), iv);

vi) Γ(x, t, ξ, τ) = 0 if t < τ .

Remark 5.4 Assumption [H] implies the existence of a smooth density p(t, ξ, x)dx := Pξ[Xt ∈
dx], t > 0, for the process (Xt)t≥0 associated to L see e.g. Stroock [37] or Nualart [32]. Ac-
tually,

Γ(x, t, ξ, τ) := p(t− τ, ξ, x)

is a fundamental solution for L in the above sense. Indeed p satisfies the Kolmogorov equation
L p = 0, in RN+1\{(ξ, τ)}. We refer to Bonfiglioli and Lanconelli [6] for a purely analytic
proof of existence of fundamental solutions for operators satisfying [H], [L].

If condition [L] holds, then we also have:

vii) Γ(z, ζ) = Γ(α ◦ z, α ◦ ζ) for every α, z, ζ ∈ RN+1, z ̸= ζ;

viii) Γ(δλ(z), δλ(ζ)) = λ−Q+2Γ(z, ζ), z, ζ ∈ RN+1, z ̸= ζ, λ > 0.

We next prove the separation property for L by adapting the argument in [14, Proposition
7.1].

Lemma 5.5 For every z1, z2 ∈ RN+1, z1 ̸= z2, there exists a function u ∈ S+
(RN+1) ∩

C(RN+1) such that u(z1) ̸= u(z2).
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Proof. Let us denote zi = (xi, ti) for i = 1, 2. First we suppose that t1 < t2. The properties
of Γ yield that there exists z0 = (x0, t0) with t0 > 0 such that Γ(z0, 0) > 0. On the other
hand, since [H] and [L] yield [B], there exists a L -regular open set V0 containing the origin,
a small r0 > 0 and a large λ0 > 1 such that

Ur0 ⊆ V0 ⊆ δλ0(Ur0), Ur0 = {(x1, . . . , xN , t) ∈ RN+1 : |xi| < r0, |t| < r0}. (5.13)

By the smoothness of Γ, there exists ε > 0 such that Γ > 0 in the set z0 ◦ Uε. For a fixed

λ ∈
]
0,
√

t2−t1
2(t0+ε)

[
and a non-negative function φ ∈ C∞

0 (z2 ◦
(
δλ(z0 ◦ Uε)

)−1 ∩ {t < t2}), we
set

uφ(z) =

∫
RN+1

Γ(z, ζ)φ(ζ) dζ, z ∈ RN+1. (5.14)

Hence, we obtain uφ ∈ C∞(RN+1), uφ ≥ 0 and L uφ = −φ ≤ 0, so that, by Remark 5.3,
uφ ∈ S(RN+1). Moreover the choice of φ implies that uφ(z1) = 0 and uφ(z2) > 0.

In the case t1 = t2, x1 ̸= x2, we consider the sequence

On(z2) =
{
ζ ∈ RN+1 : Γ(z2, ζ) > nQ−2

}
, n ∈ N. (5.15)

We note that On(z2) shrinks to {z2} as n→ ∞, by property viii) of the fundamental solution.
For any φn ∈ C∞

0 (On(z2)) such that
∫
φn = 1 and φn ≥ 0, we define uφn as in (5.14). Then,

uφn is a smooth non-negative function in RN+1 satisfying L uφn ≤ 0, and so uφn is L -
superharmonic. It holds

uφn(z2) =

∫
RN+1

Γ(z2, ζ)φn(ζ) dζ ≥ nQ−2 for every n ∈ N;

uφn(z1) ≤ max
ζ∈O1(z2)

Γ(z1, ζ) = C,

where C is a real positive constant independent of n. This ends the proof. �
We summarize the above facts in the following

Proposition 5.6 Let L be an operator in the form (5.1) and assume that [H] and [L] are
satisfied. The map H which associates any open set O ⊆ RN+1 with the linear space of the
L -harmonic functions in O is a harmonic sheaf, and (RN+1,H) is a B-harmonic space.

A remarkable feature of a B-harmonic space is that the Wiener resolutivity theorem holds
(see [4, 18]). In order to state it, we introduce some additional notations. We recall that if
O ⊂ RN+1 is a bounded open set, then an extended real function f : ∂O → [−∞,∞] is called
resolutive if

inf UO
f = supUO

f =: HO
f ∈ H(O),

where

UO
f =

{
u ∈ S(O) : inf

O
u > −∞ and lim inf

z→ζ
u(z) ≥ f(ζ), ∀ ζ ∈ ∂O

}
,

UO
f =

{
u ∈ S(O) : sup

O
u <∞ and lim sup

z→ζ
u(z) ≤ f(ζ), ∀ ζ ∈ ∂O

}
.
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We say that HO
f is the generalized solution in the sense of Perron-Wiener-Brelot to the

problem
u ∈ H(O), u = f on ∂O.

The Wiener resolutivity theorem yields that any f ∈ C(∂O,R) is resolutive. The map
C(∂O,R) ∋ f 7→ HO

f (z) defines a linear positive functional for every z ∈ O. Again, there

exists a Radon measure µOz on ∂O such that

HO
f (z) =

∫
∂O
f(ζ) dµOz (ζ). (5.16)

We call µOz the L -harmonic measure relative to O and z, and when O is L -regular this
definition coincides with the one in (5.12). Finally, a point ζ ∈ ∂O is called L -regular for O
if

lim
O∋z→ζ

HO
f (z) = f(ζ), for every f ∈ C(∂O,R). (5.17)

Obviously, O is L -regular if and only if every ζ ∈ ∂O is L -regular.

5.2 Harnack inequalities

Let O ⊂ RN+1 be an open set. A closed subset F of O is called an absorbent set if, for any
z ∈ F and any L -regular neighborhood V ⊂ V ⊂ O of z, it holds µVz (∂V \ F ) = 0. For any
given z0 ∈ O we set

Fz0 = {F ⊂ O : F ∋ z0, F is an absorbent set}.

Then,

Oz0 =
∩

F∈Fz0

F (5.18)

is the smallest absorbent set containing z0. The Potential Theory provides us with the
following Harnack inequality. Let (RN+1,H) be a B-harmonic space, let O be an open subset
of RN+1 and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Oz0) , sup
K
u ≤ CK u(z0), (5.19)

for any non-negative function u ∈ H(O). Here CK is a positive constant depending on
O,K, z0. We refer to Theorem 1.4.4 in [4] and Proposition 6.1.5 in [18]. Proposition 5.6
implies that (5.19) applies to our operator L . We summarize the above argument in the
following

Proposition 5.7 Let L be an operator in the form (5.1) satisfying [H] and [L], let O ⊆
RN+1 be an open set, and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Oz0) , sup
K
u ≤ CK u(z0),

for any non-negative solutions u to L u = 0 in O. Here CK is a positive constant depending
on O,K, z0 and on L .
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In order to prove Theorem 5.2 we give the following

Lemma 5.8 Let L be an operator as in (5.1) satisfying [H] and [L], and let O be an open
subset of RN+1. For any given z0 ∈ O, we have Az0 ⊆ Oz0 with Az0 defined in (5.6).

Proof. Since Oz0 is a closed set, and Az0 is the closure of the set Az0 defined in (5.6), it is
sufficient to show that Az0 ⊆ Oz0 . By contradiction, assume that z ∈ Az0\ Oz0 . Then, there
exists an L -admissible path γ : [0, T ] → O such that γ(0) = z0, γ(T ) = z.

We set
t1 := inf{t > 0 : γ(]t, T ]) ∩ Oz0 = ∅}.

Note that, since O \ Oz0 is an open set containing z and γ is a continuous curve, there
exists an open neighborhood U ⊆ O of z such that U ∩ Oz0 = ∅, and a positive σ satisfying
γ(]T−σ, T ]) ⊆ U . Hence, t1 ∈ [0, T [ is well defined and we have γ(t) /∈ Oz0 for every t ∈]t1, T ].
Again, by the continuity of γ, we have

z1 = γ(t1) ∈ Oz0 .

Let V ⊂ V ⊂ O be a L -regular neighborhood of z1 with z /∈ V . Arguing as above, we can
find t2 ∈]t1, T [ such that γ([t1, t2[) ⊂ V and z2 = γ(t2) ∈ ∂V . Consider any neighborhood W
of z2, such that W ⊂ O \ Oz0 . Let φ ∈ C(∂V ) be any non-negative function, supported in
W ∩ ∂V , and such that φ(z2) > 0. Recalling that the harmonic function HV

φ is non-negative,
we aim to show that

HV
φ (z1) > 0. (5.20)

By contradiction, we suppose thatHV
φ vanishes at z1. In other terms, HV

φ attains its minimum

value at z1, then Bony’s minimum principle implies HV
φ ≡ 0 in γ([t1, t2[). As a consequence,

since HV
φ satisfies (5.11),

lim
t→t−2

HV
φ (γ(t)) = 0. (5.21)

On the other hand, by the choice of φ

lim
V ∋z→z2

HV
φ (z) = φ(z2) > 0.

This contradicts (5.21) and proves (5.20). By using representation (5.12) of HV
φ in terms of

the L -harmonic measure, (5.20) reads as follows

HV
φ (z1) =

∫
∂V ∩W

φ(ζ) dµVz1(ζ) > 0, then µVz1(∂V ∩W ) > 0. (5.22)

On the other hand, z1 belongs to the absorbent set Oz0 , so that µVz1(∂V \Oz0) = 0. But this
clashes with (5.22), being W ⊆ O \ Oz0 . This accomplishes the proof. �
Proof of Theorem 5.2. It is a plain consequence of Proposition 5.7 and Lemma 5.8 �

As the following proposition shows, we are able to give a complete characterization of the
set Oz0 if Az0 is an absorbent set as well.
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Proposition 5.9 Let L be an operator as in (5.1) satisfying [H] and [L], let O ⊆ RN+1 be
an open set, and let z0 ∈ O. If Az0 is an absorbent set, then Az0 ≡ Oz0.

Proof. The claim directly follows from Lemma 5.8, recalling the definition of Oz0 . �
The first statement in next proposition is a classical result in abstract potential theory

(see e.g. [4, Theorem 1.4.1] and [18, Proposition 6.1.1]). For the convenience of the reader,
we explicitly give here its simple proof.

Proposition 5.10 Let L be an operator as in (5.1) satisfying [H] and [L], let O ⊆ RN+1

be an open set, and let z0 ∈ O. Assume that there exists a solution u ≥ 0 to L u = 0 in O
such that u ≡ 0 in Az0 and u > 0 in O \Az0. Then Az0 is an absorbent set, and Az0 ≡ Oz0.

Proof. Since u is continuous and non-negative,

Az0 = {z ∈ O : u(z) ≤ 0}

is a closed subset of O. Let z ∈ Az0 , and let V ⊂ V ⊂ O be a L -regular neighborhood of z.
As u ∈ H(O), we have

0 ≥ u(z) =

∫
∂V
u(ζ) dµVz (ζ) ≥ 0, so that µVz (∂V \ Az0) = 0.

Hence Az0 is an absorbent set. The last statement plainly follows from Proposition 5.9. �

5.3 Lifting and Harnack inequalities

We first consider the PDE (5.8) for k = 2. Note that, in this case, it is equivalent to (5.9),
and reads as follows

L =
1

2
∆x1,n + |x1,n|2∂xn+1 − ∂t. (5.23)

It is homogeneous with respect to the following dilation

δλ(x, t) =
(
λx1,n, λ

4xn+1, λ
2t
)
. (5.24)

Even if L does not satisfy [L]–i), it has a fundamental solution Γ which shares several
properties of the usual heat kernels. We remark that, since L does not satisfy the control-
lability condition [C], the support of Γ is strictly contained in the half space

{
t < τ

}
.

We next show that L can be lifted to a suitable operator L̃ in the form (5.1) satisfying
both [H] and [L]. By adding a new variable y = y1,n ∈ Rn, we define the following vector
fields on R2n+2

Ỹi = Yi = ∂xi , i ∈ [[1, n]], Z̃ = |x1,n|2∂xn+1 +

n∑
i=1

xi∂yi − ∂t. (5.25)

Clearly, if we denote v(x, y, t) = u(x, t) for any u ∈ C∞(Rn+2), we have

Ỹiv(x, y, t) = Yiu(x, t), ∀i ∈ [[1, n]], Z̃v(x, y, t) = Zu(x, t),
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then, if we consider the lifted operator L̃ = 1
2

∑n
i=1 Ỹ

2
i + Z̃, we find L̃ v(x, y, t) = L u(x, t).

By a standard procedure (see e.g., [7, Chapter 1]), we explicitly write the group law ◦ of the

homogeneous Lie group G =
(
R2n+2, ◦, (δ̃λ)λ>0

)
such that L̃ is G-Lie-invariant:

(x, y, t)◦(ξ, η, τ) = (x1,n+ξ1,n, xn+1+ξn+1+2⟨x1,n, η1,n⟩−τ |x1,n|2, y1,n+η1,n−τx1,n, t+τ),
(5.26)

and the dilation δ̃λ:
δ̃λ(x, y, t) =

(
λx1,n, λ

4xn+1, λ
3y1,n, λ

2t
)
. (5.27)

Therefore, the lifted operator L̃ satisfies [H] and [L]. In the sequel we will consider admissible
paths in the following form

γ̃′(s) =
n∑

j=1

ωj Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, τ̃ ],

for some constant vector ω = (ω1, . . . , ωn), γ̃(0) = (x, y, t). Its explicit expression is

γ̃(s) =

(
x1,n + sω, xn+1 + s|x1,n|2 + s2⟨x1,n, ω⟩+

s3

3
|ω|2, y + sx1,n +

s2

2
ω, t− s

)
. (5.28)

In order to prove an invariant Harnack inequality for the non-negative solutions to L̃ v =
0, we describe the sets Oz0 and Az0 in the case when z0 is the origin and

O =
{
(x, y, t) ∈ R2n+2 | |x1,n| < 1,−1 < xn+1 < 1, |y| < 1,−1 < t < 1

}
. (5.29)

Lemma 5.11 Let O be the open set defined in (5.29), and let z0 = (0, 0, 0). Then

Az0 =
{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
, (5.30)

and Oz0 = Az0.

Proof. In order to prove (5.30), we consider any L̃ -admissible curve γ in O. In our set-
ting, the components xn+1, y1,n and t of every diffusion trajectory are constant functions.
Moreover, any drift trajectory γ : [0, T ] → O starting from (x, y, t) is given by

γ(s) = (x1,n, xn+1 + s|x1,n|2, y + sx1,n, t− s). (5.31)

Hence, any L̃ -admissible curve γ : [0, T ] → O with γ(0) = (0, 0, 0) is given by

γ(s) =

(
x1,n(s),

∫ s

0

m∑
k=1

|ck|2IIk(r) dr,
∫ s

0

m∑
k=1

ckIIk(r) dr, −
∫ s

0

m∑
k=1

IIk(r) dr

)
, s ∈ [0, T ].

Here I1, . . . , Im are disjoint intervals contained in [0, T ] and IIk denotes the characteristic
function of Ik. The function x1,n is constant on every Ik, and any ck is a constant vector
such that |ck| ≤ 1 for k = 1, . . . ,m. As a consequence of the Hölder inequality we find

Az0 ⊆
{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
.
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In order to prove the opposite inclusion, we consider any point

(x, y, t) ∈
{
(x, y, t) ∈ O | 0 < xn+1 < −t, |y|2 < −t xn+1

}
, y ̸= 0,

and we show that there exists a L̃ -admissible curve γ = γ1 + γ2 + · · · + γ5 contained in O,
which steers (0, 0, 0) to (x, y, t). To this aim, we fix a small positive ε, that will be specified
in the sequel, and we set

sε =
−txn+1 − |y|2

xn+1 − 2|y|(1− ε)− t(1− ε)2
.

Note that −txn+1 + 2|y|t(1− ε) + t
2
(1− ε)2 ≥

(
|y|+ t(1− ε)

)2
, so that 0 < sε < −t. We set

x̃1,n = 1−ε
|y| y and we choose γ1 as a diffusion trajectory connecting (0, 0, 0) to (x̃1,n, 0, 0, 0),

and γ2 : [0, sε] → R2n+2 as a drift trajectory starting from (x̃1,n, 0, 0, 0). Hence, according
to (5.31), we find γ2(sε) =

(
x̃1,n, sε(1 − ε)2, sε

1−ε
|y| y,−sε

)
. Then, by a diffusion trajectory

γ3, we connect γ2(sε) to the point
(
|y|−sε(1−ε)

(−t−sε)|y|
y, sε(1− ε)2, sε

1−ε
|y| y,−sε

)
. We next consider a

drift path γ4 : [0,−t− sε] → R2n+2 which, by (5.31), and by our choice of sε, steers the end

point of γ3 to
(
|y|−sε(1−ε)

(−t−sε)|y|
y, xn+1, y, t

)
. Finally, we can find a diffusion path γ5 connecting

γ4(−t− sε) to (x, y, t).

Clearly, γ = γ1 + γ2 + · · · + γ5 is a L̃ -admissible curve of R2n+2 connecting (0, 0, 0) to
(x, y, t). Next we prove that, for sufficiently small ε, the trajectory γ is contained in O. To
this aim, as the set O is convex and the paths γ1, γ2, . . . , γ5 are segments, we only need to
show that the end-points of γ1, γ2, γ3, γ4 belong to O. The inequalities −1 < |y|−sε(1−ε)

−t−sε
< 1

directly follow from the definition of sε, for sufficiently small positive ε. The other inequalities
are a plain consequence of the fact that 0 < sε < −t < 1, as previously noticed. Since Az0 is

the closure of the set of the points that can be reached by a L̃ -admissible path, we get{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
⊆ Az0 .

This concludes the proof of (5.30).
To complete the proof, by Proposition 5.10 it is sufficient to find a non-negative solution

v of L̃ v = 0, such that v ≡ 0 in Az0 , and v > 0 in O \Az0 . Let φ be any function in C(∂O),
such that φ ≡ 0 in ∂O∩Az0 and φ > 0 in ∂O\Az0 . Then the Perron-Wiener-Brelot solution
v := HO

φ of the following Cauchy-Dirichlet problem{
L̃ v = 0 in O
v = φ in ∂O

is non-negative. Next we prove that v > 0 in O\Az0 . By contradiction, let (x, y, t) ∈ O\Az0

be such that v(x, y, t) = 0. Then (x, y, t) is a minimum for v, so that from Bony’s minimum
principle [9, Théorème 3.2] it follows that v(x̃1,n, xn+1, y, t) = φ(x̃1,n, xn+1, y, t) = 0, for
every x̃1,n ∈ ∂(] − 1, 1[n). Since every point (x̃1,n, xn+1, y, t) is regular for the Dirichlet
problem, and belongs to ∂O\Az0 , we find a contradiction with our assumption on φ. Suppose
now that there exists (x, y, t) ∈ Az0 such that v(x, y, t) > 0. Since every point of the set
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∂O ∩ Az0 is L̃ -regular, v is continuous in Az0 . Hence there exists a (x, y, t) ∈ Az0 such
that v(x, y, t) = maxAz0

v > 0. By Bony’s minimum principle we have v(x̃1,n, xn+1, y, t) =
φ(x̃1,n, xn+1, y, t) > 0, for any x̃1,n ∈ ∂(] − 1, 1[n), and this fact contradicts our assumption
on φ. �

Next we introduce some notations to state a Harnack inequality which is invariant with
respect to the group law ◦ defined in (5.26) and the dilation δ̃r introduced in (5.27). Consider
the box Qr =]− r, r[n×]− r4, r4[×]− r3, r3[n×]− r2, 0], and note that Qr = δ̃rQ1. For every
compact set K ⊆ Q1, for any positive r and for any z0 ∈ R2n+2 we denote by

Qr(z0) = z0 ◦ δ̃rQ1 =
{
z0 ◦ δ̃rζ | ζ ∈ Q1

}
, Kr(z0) = z0 ◦ δ̃rK. (5.32)

Corollary 5.12 For every compact set K ⊆
{
(x, y, t) ∈ Q1 | 0 < xn+1 < −t, |y|2 < −txn+1

}
,

r > 0 and z0 ∈ R2n+2 there exists a positive constant CK, depending only on L̃ and K, such
that

sup
Kr(z0)

v ≤ CK v(z0),

for every non-negative solution v of L̃ v = 0 on any open set containing Qr(z0).

Proof. Consider the function w(z) = v
(
z0 ◦ δ̃rz

)
. By the invariance with respect to δ̃r and ◦,

we have L̃w = 0 in Q1. Aiming to apply Theorem 5.2, we consider the open set O defined
in (5.29), and we note that O ∩

{
t < 0

}
⊂ Q1. Then w is defined as a continuous function

on ∂O ∩
{
t < 0

}
. We extend w to a continuous function on ∂O, and we solve the boundary

value problem L̃ w̃ = 0 in Q̃1, with w̃ = w in ∂O. Then we apply Theorem 5.2 and Lemma
5.11, and we get supK w̃ ≤ CK w̃(0, 0, 0). By the comparison principle we have w̃ = w in
O ∩

{
t ≤ 0

}
, then the claim plainly follows from the inclusion K ⊂ O ∩

{
t < 0

}
. �

We are now ready to build a Harnack chain for (5.23) by using the following set

K =
{
(x, y, t) ∈ R2n+2 | |x1,n| ≤ 1

2 ,
1
32 ≤ xn+1 ≤ 1

4 , |y| ≤
1
8 , t = −1

2

}
(5.33)

which is a compact subset of
{
(x, y, t) ∈ Q1 | 0 < xn+1 < −t, |y|2 < −txn+1

}
. Before doing

that for k = 2 only, we extend the above procedure to equations (5.8) and (5.9) for k > 2.

We next show that, in both cases (5.8) and (5.9), L can be lifted to a suitable operator

L̃ in the form (5.1) satisfying [H] and [L]. We introduce a new variable y ∈ R(k−1)n, that will
be denoted as follows y = (y1, y2, . . . , y(k−1)), with yj = (yj1, . . . , yjn) ∈ Rn for j ∈ [[1, k− 1]].

We then define the lifted vector fields on Rkn+2:

Ỹi = Yi = ∂xi , i ∈ [[1, n]], Z̃ = Z +
k−1∑
i=1

n∑
j=1

xij∂yij ; (5.34)

where Z = |x1,n|k∂xn+1 − ∂t for (5.8), and Z =
∑n

j=1 x
k
j∂xn+1 − ∂t for (5.9). If we denote

v(x, y, t) = u(x, t) for any u ∈ C∞(Rn+2), we have

Ỹiv(x, y, t) = Yiu(x, t), ∀i ∈ [[1, n]], Z̃v(x, y, t) = Zu(x, t).

45



Then, setting L̃ = 1
2

∑n
i=1 Ỹ

2
i + Z̃, we plainly find L̃ v(x, y, t) = L u(x, t).

Since dim
(
Lie{Ỹ1, . . . , Ỹn, Z̃}

)
= kn + 2 and rank

(
Lie{Ỹ1, . . . , Ỹn, Z̃}(x, y, t)

)
= kn + 2

at every point (x, y, t) ∈ Rkn+2, Theorem 1.1 in [6] yields the existence of a homogeneous

Lie group G =
(
Rkn+2, ◦, (δ̃λ)λ>0

)
such that L̃ is Lie-invariant on G. Therefore, the lifted

operators L̃ satisfy [H] and [L]. The dilation δ̃λ acts as follows:

δ̃λ(x, y, t) =
(
λx1,n, λ

k+2xn+1, λ
3y1, . . . , λ

k+1yk−1, λ
2t
)
, (5.35)

for every (x, y, t) ∈ Rkn+2, and λ > 0. We next aim to apply Theorem 5.2 in order to
prove a Harnack inequality on the lifted space Rkn+2. For any ω ∈ L2([−T, T ],Rn) for every
(x, y, t) ∈ Rkn+2 and T > 0, we denote by γ̃ : [−T, T ] → Rkn+2 the solution of the Cauchy
problem {

γ̃′(s)=
∑n

j=1 ωj(s)Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [−T, T ],
γ̃(0) = (x, y, t).

(5.36)

In order to simplify the notation, in the sequel we will denote the solution of (5.36) as

γ(s) = (x1,n(s), xn+1(s), y(s), t(s)) , s ∈ [−T, T ]. (5.37)

Note that t(s) = t− s for every s ∈ [−T, T ], so that t(T ) = t− T .
The composition law “◦” of G is related to (5.36) as follows: if

(
x, y, t

)
= γ̃(T ) is the

end point of the path γ̃ defined by (5.36) with γ̃(0) = (0, 0, 0) and
(
x̃, ỹ, t̃

)
= γ̃(T ) is the end

point of the path γ̃ defined by (5.36) with γ̃(0) = (ξ, η, τ), then(
x̃, ỹ, t̃

)
= (ξ, η, τ) ◦

(
x, y, t

)
, (5.38)

with t = −T (see for instance Corollary 1.2.24 in [7]). The above identity also holds when
computing γ̃ at s = −T . In particular, if we choose any ω ∈ Rn, and t > 0, we let T =
t, ω(s) = ω for any s ∈ [−t, t], we find

x =
(
−tω,− t

k+1

k+1 |ω|
k
)
, t̃ = τ + t,

x̃ =

(
ξ1,n − tω, ξn+1 −

∫ t

0
|ξ1,n − sω|k ds

)
.

(5.39)

According with Remark 5.4, the fundamental solution Γ̃ of L̃ exists and is invariant with
respect to the group operations (5.38) and (5.35). Then function

Γ(x, t, ξ, τ) =

∫
R(k−1)n

Γ̃(x, y, t, ξ, 0, τ)dy (5.40)

is a fundamental solution to L and gets from Γ̃ the following invariance properties:

Γ(x̃, t̃, ξ, τ) = Γ(x, t, 0, 0),

Γ
(
λx1,n, λ

k+2xn+1, λ
2t, 01,n+1, 0

)
=

1

λn+k+2
Γ(x, t, 01,n+1, 0),

(5.41)

for every (ξ, τ)(x, t) ∈ Rn+2, λ > 0, where (x̃, t̃) is defined in (5.38). In the following remark
we summarize the above properties when (x, t) has the form (5.39).
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Remark 5.13 For every (ξ, τ) ∈ Rn+2, t > 0 and for any constant vector ω ∈ Rn, we have

Γ

(
ξ1,n −

√
tω, ξn+1 −

∫ t

0

∣∣∣∣ξ1,n − s√
t
ω

∣∣∣∣k ds, τ + t, ξ, τ

)
=

1

t
n+k
2

+1
Γ
(
− ω,− |ω|k

k+1 , 01,n+1, 0
)
.

We next focus on the attainable set Az0 of the unit cylinder

O =
{
(x, y, t) ∈ Rkn+2 | |x1,n| < 1,−1 < xn+1 < 1, |y| < 1,−1 < t < 1

}
, (5.42)

with respect to the point z0 = (0, 0, 0). Here |x1,n| and |y| denote, respectively, the Euclidean
norm of the vectors x1,n ∈ Rn and y ∈ R(k−1)n.

Unlike the case k = 2, as k > 2 we are not able to give a complete characterization of the
sets Az0 and Oz0 as we did in Lemma 5.11. We will consider instead the differential of the
end point map related to (5.36) to find some interior points of Az0 . With obvious meaning
of the notations, we set

(
x(T ), y(T ), t(T )

)
= γ̃(T ), we note that t(T ) = t− T , and we define

E : L2([0, T ]) → Rkn+1, E(ω) = E(ω, x, y, t, T ) :=
(
x(T ), y(T )

)
. (5.43)

We refer to the classical literature (see e.g. [12, Theorem 3.2.6]) for the differentiability
properties of E. We next show that the differential DE(ω) of E, computed at some given
ω ∈ L2([0, T ]) is surjective. Hence E(ω) is an interior point of Az0 , so that we can apply
Theorem 5.2.

Lemma 5.14 Let w be any given vector of Rn such that wj ̸= 0 for every j ∈ [[1, n]]. Consider
the solution γ̃ to the problem (5.36), with ω ≡ w. Then DE(ω) is surjective.

Proof. By the invariance of the vector fields Ỹi, i ∈ [[1, n]], and Z̃ with respect to the homoge-
neous Lie group G, is not restrictive to assume (x, y, t) = (0, 0, 0) and T = 1. To prove our
claim, we compute

DE(ω)ω̃ = lim
h→0

1

h

(
E(ω + hω̃)− E(ω)

)
,

where

ω̃(s) =
1

b− a
v for s ∈ [a, b], a, b ∈ [0, 1], a < b, v is any vector of Rn,

ω̃(s) = 0 for s ̸∈ [a, b]. (5.44)

In the sequel, we denote by γ̃h(s) =
(
xh(s), yh(s), th(s)

)
the solution of (5.36) relevant to

ω + hω̃. Clearly, th(s) = −s, and xh(1) = w + hv, so that

lim
h→0

1

h

(
xh1,n(1)− x1,n(1)

)
= v. (5.45)

We next show that, for every j ∈ [[1, n]] and i ∈ [[1, k − 1]], we have

lim
h→0

yhij(1)− yij(1)

h
=

(
i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
+ 1− bi

)
wi−1

j vj . (5.46)
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Indeed, we have

yhij(1) =

∫ a

0
(twj)

idt+

∫ b

a

(
twj + h

t− a

b− a
vj

)i

dt+

∫ 1

b
(twj + hvj)

i dt

=

∫ a

0
(twj)

idt+

∫ b

a
(twj)

i dt+

∫ 1

b
(twj)

i dt

+ ihwi−1
j vj

(∫ b

a
ti−1 t− a

b− a
dt+

∫ 1

b
ti−1dt

)
+ o(h), as h→ 0,

= yij(1) +

(
i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
+ 1− bi

)
wi−1

j vjh+ o(h), as h→ 0,

where o(h) vanishes as h goes to zero. This proves (5.46). Analogously,

lim
h→0

xhn+1(1)− xn+1(1)

h
=

(
k

k + 1

bk+1 − ak+1

b− a
− a

bk − ak

b− a
+ 1− bk

)
|w|k−2⟨w, v⟩, (5.47)

when considering system (1.3), and

lim
h→0

xhn+1(1)− xn+1(1)

h
=

(
k

k + 1

bk+1 − ak+1

b− a
− a

bk − ak

b− a
+ 1− bk

) n∑
j=1

wk−1
j vj , (5.48)

in the case of (1.4). Note that for all i ∈ [[1, k]] one has

i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
= O(b− a), as b− a→ 0, (5.49)

for any i ∈ [[1, k]]. Then, from (5.45), (5.46), (5.47), in the case (1.3), it follows that

DE(ω)ω̃ =

(
v,
(
1− bk

)
|w|k−2⟨w, v⟩, (1− b)v,

(
1− b2

)
w1v1, . . . ,

(
1− b2

)
wnvn,

. . . ,
(
1− bk−1

)
wk−2

1 v1, . . . ,
(
1− bk−1

)
wk−2

n vn

)
+O(b− a),

(5.50)

as b − a → 0. We next choose b0, . . . , bk ∈]0, 1] such that bi ̸= bm if i ̸= m and we let v be
any unit vector ej of the canonical basis of Rn. Then the j − th, the n+ j + 1− th . . . , the
(k − 1)n+ j + 1− th components of DE(ω)ω̃ are(

1, 1− bi, (1− b2i )wj , . . . ,
(
1− bk−1

i

)
wk−2

j

)
,

while the n + 1 − th component is
(
1 − bki

)
|w|k−2wj . By our assumption, wj ̸= 0, and the

following (k + 1)× (k + 1) matrix

M(b0, b1, . . . , bk) =


1 1− b0 1− b20 . . . 1− bk0
1 1− b1 1− b21 . . . 1− bk1
...

...
...

. . .
...

1 1− bk 1− b2k . . . 1− bkk

 .
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is non singular, since

detM(b0, b1, . . . , bk) = (−1)k
∏
i̸=m

(
bi − bm

)
̸= 0,

because of our choice of the bi’s. Thus, if we choose v = ej and each ai sufficiently close to
bi, then (5.50) restores k + 1 linearly independent vectors. In conclusion, it is possible to
find v1, . . . , vn, b0, . . . , bk, a0, . . . , ak, such that the vectors DE(ω)ω̃ defined by using vj , ai, bi
in (5.44), span Rkn+1. This proves our claim for system (1.3). The proof in the case (1.4) is
analogous, we only need to replace (5.47) by (5.48). We omit the details. �

We next obtain, as a corollary, a Harnack inequality which is invariant with respect to
the Lie group G =

(
Rkn+2, ◦, (δ̃λ)λ>0

)
. For every compact subset K of the unit cylinder O

defined in (5.42), any positive r and any z0 = (x0, y0, t0) ∈ Rkn+2 we set

Or(z0) = z0 ◦ δ̃rO =
{
z0 ◦ δ̃rζ | ζ ∈ O

}
, Kr(z0) = z0 ◦ δ̃rK. (5.51)

We recall the definition of the end-point map E introduced in (5.43), and we define the
following sets

Ĩ :=
{
ω :
[
0, 12
]
→ Rn | ω(s) ≡ ω̃ with 1

4 ≤ |ω̃j | ≤ 1, j ∈ [[1, n]]
}
,

Î :=
{
ω :
[
0, 12
]
→ Rn | ωj(s) = ĉ for any s ∈

[
0, 18
]
∪
[
3
8 ,

1
2

]
,

ωj(s) = −ĉ for any s ∈
[
1
8 ,

3
8

]
, j ∈ [[1, n]] with 1 ≤ ĉ ≤

√
2,
}
,

K̃ :=
{(
E(ω, 0, 0, 0, 12),

1
2

)
| ω ∈ Ĩ

}
K̂ :=

{(
E(ω, 0, 0, 0, 12),

1
2

)
| ω ∈ Î

}
.

(5.52)

We remark that K̃ and K̂ are compact subset of the unit cylinder defined in (5.42), being E a
continuous map. We also note that, if we denote by z = (x, y, t) the point

(
E(ω, 0, 0, 0, 12),

1
2

)
with ω as described in Î, we have x1,n = 01,n, xn+1 = ĉkan+1,k, with:

an+1,k = 4nk/2

k+1 8−(k+1) for (5.8),

an+1,k = 4n
k+18

−(k+1) for (5.9) and k even,

an+1,k = 0 for (5.9) and k odd.

(5.53)

Proposition 5.15 Let O ⊆ Rkn+2 be the unit cylinder defined in (5.42), let r > 0 and let

z0 = (x0, y0, t0) ∈ RN+1. If L̃ is the lifted operator of L in (5.8) or (5.9), then there exists
a positive constant c̃ such that the sets K̃ and K̂ defined in (5.52) are compact subsets of
Int
(
A(0,0,0)

)
. Moreover there exist two positive constants CK̃, CK̂, only depending on O and

on L̃ , such that
sup

K̃r(z0)

ũ ≤ CK̃ ũ(z0), sup
K̂r(z0)

ũ ≤ CK̂ ũ(z0),

for every positive solution ũ of L̃ũ = 0 in Or(z0).

Proof. By the invariance of L̃ with respect to the homogeneous Lie group G, it is not
restrictive to assume (x0, y0, t0) = (0, 0, 0) and r = 1. By Lemma 5.14 E(ω) is an interior
point of A(0,0,0) for any ω ∈ Ĩ, and for any ω ∈ Î. The conclusion follows from Theorem 5.2.
�

49



6 Harnack chains and lower bounds

In this section we build Harnack chains and we prove asymptotic lower bounds for positive
solutions to L u = 0. In the first Lemma 6.1 we capture paths that give Gaussian lower
bounds as |x1,n− ξ1,n|2 ≥ K(t− τ), for suitably big K and asymptotic bounds for points x, ξ
with |xn+1 − ξn+1| suitably big with respect to (t− τ)1+k/2.

Lemma 6.2 applies when |xn+1 − ξn+1| is small with respect to (t− τ)1+k/2. Moreover, in
this lemma, we consider points with non degenerate components set to zero. In such case, if
we denote (x, y, t) = (x̃, ỹ, t̃) ◦ (x̂, ŷ, t̂), then

x̃1,n = x̂1,n = 01,n =⇒ xn+1 = x̃n+1 + x̂n+1, (6.1)

that is the group law ◦ is additive w.r.t. the (n+ 1)th component. In some sense this allows
to move in the direction of the vector field [∂x1 , [∂x1 , · · · , [∂x1 , Z] · · · ]]︸ ︷︷ ︸

k times

= k!∂xn+1 .

The proof of the two lemmas is based on the lifting procedure introduced in Section 5
and on the construction of a finite sequence of cylinders contained in the lifted domain of the
solution. Specifically, we find points along the trajectory of the integral path introduced in
(5.36). The bounds depend on the length of the Harnack chain that in turns depends on the
slope of the trajectory. Asymptotic lower bounds are proved in Propositions 6.3 and 6.4.

Lemma 6.1 Let L be the operator defined in (5.8) or in (5.9), let T1, τ, t, T2 be such that
T1 < τ < t < T2 and t− τ ≤ τ − T1. Let γ : [0, t− τ ] → Rn+1× ]T1, T2[ be a path satisfying

γ′(s) =

n∑
j=1

ωjYj(γ(s)) + Z(γ(s)), γ(0) = (x, t), γ(t− τ) = (ξ, τ), (6.2)

for some constant vector of Rn such that

max
j∈[[1,n]]

|ωj | ≤ 2 min
i∈[[1,n]]

|ωi|, and that (t− τ) max
j∈[[1,n]]

ω2
j ≥ 4.

Then there exists a positive constant C, only depending on L , such that:

u(ξ, τ) ≤ exp

(
C
(
(t− τ) max

j∈[[1,n]]
ω2
j + 1

))
u(x, t),

for every non-negative solution u to L u = 0 in Rn+1× ]T1, T2[.

Proof. Define the function ũ by setting ũ(x, y, t) = u(x, t) for every (x, y, t) ∈ Rkn+1× ]T1, T2[.

Clearly, ũ is a non-negative solution to L̃ ũ = 0. Let γ̃ : [0, t − τ ] → Rkn+1× ]T1, T2[ be the
solution of the Cauchy problem{

γ̃′(s)=
∑n

j=1 ωj Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, t− τ ],

γ̃(0) = (x, 0, t),
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where ω is the constant vector in (6.2). Note that, if x̃1,n+1 and x1,n+1 are the first n + 1
components of γ̃ and γ, respectively, then we have x̃1,n+1(s) = x1,n+1(s), for every s ∈ [0, t−τ ].

We next apply the Harnack inequalities stated in Proposition 5.15 to a suitable set of
points z1, . . . , zm lying on γ̃([0, t−τ ]). We suppose ω2

1 = maxj∈[[1,n]] ω
2
j , as it is not restrictive,

and we let m be the unique positive integer such that m− 1 <
(t−τ)ω2

1
2 ≤ m. We set s̃ = t−τ

m

and we define zj = γ̃(js̃) for j ∈ [[1,m]]. In order to apply Proposition 5.15, we put r̃ =
√
2s̃,

and ω̃ = r̃
2ω. Note that m ≥ (t−τ)ω2

1
2 ≥ 2 and, as a consequence, we have ω̃ ∈ Ĩ. Thus, if

we denote by z̃ the point
(
E(ω̃, 0, 0, 0, 12),

1
2

)
defined in (5.52), we have z̃ ∈ K̃. Moreover,

zj = zj−1 ◦ δr̃ z̃, thus
zj ∈ K̃r̃(zj−1), for any j ∈ [[1,m]].

Note that by our assumption, r̃2

2 ≤ 2
ω2
1
≤ t − τ ≤ τ − T1, hence, Or̃(zj) ⊂ Rkn+1× ]T1, T2[

for every j ∈ [[0,m − 1]]. Thus, by Proposition 5.15, there exists a constant CK̃ > 1 such

that ũ(zj) ≤ CK̃ ũ(zj−1) for every j ∈ [[1,m]]. In particular, being m <
(t−τ)ω2

1
2 + 1, z0 =

(x, 0, t), zm = γ̃(t− τ), we find

ũ
(
γ̃(t− τ)

)
≤ C

(t−τ)ω2
1

2
+1

K̃
ũ(x, 0, t).

Hence,

u
(
ξ, τ
)
= u

(
γ(t− τ)

)
= ũ

(
γ̃(t− τ)

)
≤ C

(t−τ)ω2
1

2
+1

K̃
ũ(x, 0, t) = C

(t−τ)ω2
1

2
+1

K̃
u(x, t),

and our claim follows by choosing C := log(CK̃). �
Note that, whenever Lemma 6.1 applies, we have x1,n(t − τ) = x1,n + (t − τ)ω ̸= x1,n.

Next result gives a bound along a trajectory γ̃ such that x1,n(s) = 0 for any s ∈ [0, t− τ ].

Lemma 6.2 Let L be the operator defined in (5.8) or in (5.9), with k even, and let an+1,k

be as in (5.53). Let T1, τ, t, T2 be such that T1 < τ < t < T2 and t− τ ≤ τ − T1. Then there
exists a positive constant C, only depending on L , such that:

u
(
01,n, xn+1 + ξ̃n+1, τ

)
≤ exp

(
C

(
(t− τ)1+2/k

ξ̃
2/k
n+1

+ 1

))
u(01,n, xn+1, t).

for every (x, t) ∈ Rn+1× ]T1, T2[, τ ∈]T1, t[ with ξ̃n+1 ∈
]
0, 2 an+1,k(t− τ)1+k/2

[
, for every

non-negative solution u to L u = 0 in Rn+1× ]T1, T2[.

Proof. As in the proof of Lemma 6.1, we consider the function ũ defined as ũ(x, y, t) = u(x, t)
for every (x, y, t) ∈ Rkn+1× ]T1, T2[. Let m be the unique positive integer such that

m− 1 <
(
2(t− τ)

)1+2/k

(
an+1,k

ξ̃n+1

)2/k

≤ m. (6.3)
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Let r̃ =

√
2(t−τ)

m and let ĉ =
(

ξ̃n+1

an+1,k

)1/k
m1/2(

2(t−τ)
)1/2+1/k . Note that from our assumption

0 < ξ̃n+1 < 2 an+1,k(t− τ)1+k/2 it follows that m ≥ 2, hence 1 ≤ ĉ ≤
√
2. Then, if we denote

by z the point
(
E(ω, 0, 0, 0, 12),

1
2

)
defined in (5.52), with ĉ as above, we have z ∈ K̂.

Let z0 = (01,n, xn+1, 0, t), and let zj = zj−1 ◦ δr̃ z, for j ∈ [[1,m]]. By our assumption we
also have r̃2 ≤ τ − T1, then Or̃(zj) ⊂ Rkn+1×]T1, T2[, for every j ∈ [[0,m]]. Thus Proposition
5.15 yields ũ(zm) ≤ Cm

K̂
ũ(z0). According with (6.1), and with our choice of m, ĉ, and r̃, the

first n+ 1 components of zm are
(
01,n, xn+1 + ξ̃n+1

)
. Then

u(01,n, xn+1 + x̃n+1, τ) = ũ(zm) ≤ Cm
K̂ ũ(z0) = Cm

K̂ u(01,n, xn+1, t),

and the conclusion follows from (6.3). �

Proposition 6.3 Let L be the operator defined in (5.8) and let k be a positive even integer.
Let u : Rn+1×]T1, T2[→ R be a non-negative solution to L u = 0, and let t, τ ∈ R be such
that T1 < τ < t < T2, and t− τ ≤ 2(τ − T1). Then there exists a positive constant C1, only
depending on L , such that

i) for any x, ξ ∈ Rn+1 such that ξn+1−xn+1 ≥ 15k
(
(t−τ)(|x1,n|k+ |ξ1,n|k)+nk/2(t−τ)1+k/2

)
we have

u(ξ, τ) ≤ exp

(
C1

(
|x1,n − ξ1,n|2

t− τ
+

(
ξn+1 − xn+1 − t−τ

2k+4

(
|x1,n|k + |ξ1,n|k

))2/k
(t− τ)1+2/k

+1

))
u(x, t);

ii) for any x, ξ ∈ Rn+1 such that 0 < ξn+1 − xn+1 ≤ t−τ
2(k+1)

(
|x1,n|k + |ξ1,n|k

)
+ nk/2

8k+1(k+1)
(t−

τ)1+k/2 we have

u(ξ, τ) ≤ exp

(
C1

(
|x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u(x, t).

Proof of (i). We divide the proof into two steps. In the first one we find a path γ :
[
0, t−τ

2

]
→

Rkn+2 that steers x1,n to ξ1,n. In the second step another path γ1 + γ2 steers the (n + 1)th
component xn+1

(
t−τ
2

)
of γ

(
t−τ
2

)
to ξn+1.

Step 1: If ω = 2
t−τ (x1,n − ξ1,n) satisfies the assumptions of Lemma 6.1, then one read-

ily gets x1,n
(
t−τ
2

)
= ξ1,n and u

(
γ
(
t−τ
2

))
≤ exp(C[2

|x1,n−ξ1,n|2
t−τ + 1])u(x, t) and the first

step is achieved. If this is not the case, we rely on the following construction. Set K =

maxj∈[[1,n]]
|ξj−xj |√

t−τ
and M := max{3K, 32}. For every j ∈ [[1, n]], we set

ω̃j :=
4M√
t− τ

, ω̂j := 4
ξj − xj
t− τ

− 4M√
t− τ

,
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so that

8

3

M√
t− τ

≤ |ω̂j | ≤
16

3

M√
t− τ

,
t− τ

4
ω̃2
j ≥ 9,

t− τ

4
ω̂2
j ≥ 4.

Consider now the path γ associated to (6.2) with ω(s) = ω̃Is∈[0, t−τ
4

] + ω̂Is∈[ t−τ
4

, t−τ
2

] for which

x1,n
(
t−τ
2

)
= ξ1,n. The assumptions of Lemma 6.1 are clearly satisfied. Hence:

u
(
γ
(
t−τ
2

))
≤ exp

(
C ′
(
|x1,n − ξ1,n|2

t− τ
+ 1

))
u(x, t),

γ
(
t−τ
2

)
=

(
ξ1,n, xn+1 +

∫ t−τ
2

0

∣∣∣∣x1,n +

∫ s

0
ω(u)du

∣∣∣∣k ds, t+ τ

2

)
,

(6.4)

for some positive constant C ′. By a plain change of variable in the above integral we find

xn+1

(
t−τ
2

)
− xn+1 =

∫ t−τ
4

0
|x1,n + sω̃|k ds+

∫ t−τ
4

0
|ξ1,n − sω̂|k ds. (6.5)

Note that, for s ∈
[
0, t−τ

4

]
and j ∈ [[1, n]], we have

|xj + sω̃j | ≤ |xj |+ 4s√
t−τ

M ≤ |xj |+ 3
(
|xj − ξj |+

√
t−τ
2

)
≤ 4|xj |+ 3|ξj |+ 3

√
t−τ
2

|ξj − sω̂j | ≤ |ξj |+ 4s√
t−τ

(
M +

|xj−ξj |√
t−τ

)
≤ 4|xj |+ 5|ξj |+ 3

√
t−τ
2 ,

(6.6)

thus, from the elementary inequality (a2 + b2 + c2)k/2 ≤ 3k/2−1(ak + bk + ck), we get

xn+1

(
t−τ
2

)
− xn+1 ≤ t−τ

4 3k−1
(
22k+1|x1,n|k +

(
3k + 5k

)
|ξ1,n|k + 2

(
3knk/2

2k

)
(t− τ)k/2

)
.

Recalling that ξn+1 − xn+1 ≥ 15k
(
(t− τ)(|x1,n|k + |ξ1,n|k) + nk/2(t− τ)1+k/2

)
, we find

ξn+1 − xn+1

(
t−τ
2

)
≥ t− τ

2
15k
(
|x1,n|k + |ξ1,n|k + nk/2(t− τ)k/2

)
. (6.7)

We next prove a similar lower bound for xn+1

(
t−τ
2

)
− xn+1. To this aim, we note that, if

|x1,n| ≥ t−τ
8 |ω̃|, then |x1,n + sω̃| ≥ 1

2 |x1,n| for every s ∈
[
0, t−τ

16

]
. Analogously, if |x1,n| ≤

t−τ
8 |ω̃|, then |x1,n + sω̃| ≥ t−τ

16 |ω̃| for every s ∈
[
3
16(t− τ), t−τ

4

]
. The same remark holds if we

replace x1,n and ω̃ by ξ1,n and ω̂, respectively. As a consequence we find,

xn+1 − xn+1

(
t−τ
2

)
≥ t− τ

16

(
max

{
|x1,n|k

2k
,

(
t− τ

16
|ω̃|
)k
}

+max

{
|ξ1,n|k

2k
,

(
t− τ

16
|ω̂|
)k
})

,

so that, in particular,

xn+1

(
t−τ
2

)
− xn+1 ≥

t− τ

2k+4

(
|x1,n|k + |ξ1,n|k

)
. (6.8)
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Step 2: We next denote by ω the vector in Rn such that ωj = 1 if ξj ≥ 0, ωj = −1 if
ξj < 0, for j ∈ [[1, n]], and we fix a real parameter b ≥ 4√

t−τ
, that will be specified later. We

consider the path γ1 :
[
t−τ
2 , 34(t− τ)

]
→ Rn+1×]T1, T2[, starting from γ

(
t−τ
2

)
and defined as

in (6.2) with ω = b ω, then the path γ2 :
[
3
4(t− τ), t− τ

]
→ Rn+1×]T1, T2[, starting from

γ1
(
3
4(t− τ)

)
and defined by setting ω = −b ω. From Lemma 6.1 it then follows

u (ξ1,n, φ(b), τ) ≤ exp

(
2C

(
(t− τ)b2

4
+ 1

))
u
(
γ
(
t−τ
2

))
, (6.9)

where

φ(b) = xn+1

(
t−τ
2

)
+ 2

∫ t−τ
4

0
|ξ1,n + sb ω|k ds

is an increasing continuous function of b ∈
[

4√
t−τ

,+∞
[
. An elementary computation shows

that

2

∫ t−τ
4

0
|ξ1,n + sb ω|k ds ≤ 2k

t− τ

4
|ξ1,n|k +

bknk/2

k + 1

(t− τ)k+1

2k+2
,

then

φ

(
4√
t− τ

)
≤ xn+1

(
t−τ
2

)
+ 2k

t− τ

4
|ξ1,n|k +

2k−2nk/2

k + 1
(t− τ)1+k/2 < ξn+1,

by (6.7). On the other hand we have

φ(b) ≥ xn+1

(
t−τ
2

)
+

bk

k + 1

(t− τ)k+1nk/2

22k+1
→ +∞, as b→ +∞. (6.10)

Hence, there exists a unique b̃ ≥ 4√
t−τ

such that φ(̃b) = ξn+1. Moreover from (6.10) it also

follows that

b̃ ≤ 2(k + 1)1/k
(

2
t−τ

)1+1/k (
ξn+1 − xn+1

(
t−τ
2

))1/k
n−1/2,

which, together with (6.8), gives

b̃ ≤ (k + 1)1/k
(

2
t−τ

)1+1/k
(
ξn+1 − xn+1 −

t− τ

2k+4

(
|x1,n|k + |ξ1,n|k

))1/k

.

Eventually, equation (6.9) yields

u(ξ, τ) ≤ exp

(
C1

(
(ξn+1 − xn+1 − t−τ

2k+4 (|x1,n|k + |ξ1,n|k))2/k

(t− τ)1+2/k
+ 1

))
u
(
γ
(
t−τ
2

))
.

with C1 = 41+1/k(k + 1)2/kC. The above inequality, with (6.4), proves the claim (i).

Proof of (ii). We prove our claim by applying Lemma 6.2 in a suitable interval [τ+t2, t−t1] (
[τ, t], and Lemma 6.1 in the remaining intervals [t − t1, t] and [τ, τ + t2]. We first suppose
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that x1,n ̸= 0, ξ1,n ̸= 0, we set

t1 = min

{
maxj∈[[1,n]] x

2
j

4
,
ξn+1 − xn+1

|x1,n|k
,
t− τ

3

}
,

t2 = min

{
maxj∈[[1,n]] ξ

2
j

4
,
ξn+1 − xn+1

|ξ1,n|k
,
t− τ

3

}
,

and we consider the paths

γ1(s) =

((
1− s

t1

)
x1,n, xn+1 +

(s− t1)
k+1 + tk+1

1

(k + 1)tk1
|x1,n|k, t− s

)
, s ∈ [0, t1]

γ2(s) =

(
s

t2
ξ1,n, ξn+1 +

sk+1 − tk+1
2

(k + 1)tk2
|ξ1,n|k, τ + t2 − s

)
, s ∈ [0, t2].

We next proceed assuming that maxj∈[[1,n]] |xj | ≤ 2mini∈[[1,n]] |xi| and maxj∈[[1,n]] |ξj | ≤
2mini∈[[1,n]] |ξi|. In this case we apply Lemma 6.1 in the interval [0, t1] with ω = − 1

t1
x1,n, so

that we have t1maxj∈[[1,n]] ω
2
j ≥ 4 and maxj∈[[1,n]] |ωj | ≤ 2mini∈[[1,n]] |ωi|. We find

u
(
γ1(t1)

)
≤ exp

(
C

(
max

{
|x1,n|k+2

ξn+1 − xn+1
, 3

|x1,n|2

t− τ
, 4

}
+ 1

))
u(x, t),

u(ξ, τ) ≤ exp

(
C

(
max

{
|ξ1,n|k+2

ξn+1 − xn+1
, 3

|ξ1,n|2

t− τ
, 4

}
+ 1

))
u
(
γ2(0)

)
,

(6.11)

with

γ1(t1) =
(
0, xn+1 +

t1
k+1 |x1,n|

k, t− t1

)
, γ2(0) =

(
0, ξn+1 − t2

k+1 |ξ1,n|
k, τ + t2

)
.

If maxj∈[[1,n]] |xj | > 2mini∈[[1,n]] |xi|, we rely on the argument used at the beginning of the proof

of (i). Specifically, we set M := max{3maxj∈[[1,n]]
|xj |√
t1
, 32}, and ω̃j := 2 M√

t1
, ω̂j :=

2
t1
xj + 2 M√

t1
for every j ∈ [[1, n]], then we consider the path γ associated to (6.2) with ω(s) = ω̃I

s∈[0, t1
2
]
−

ω̂I
s∈[ t1

2
,t1]

. Also in this case we get (6.11), with some bigger constant C. Aiming to simplify

our exposition we omit the details of the proof.
We next conclude the proof by using Lemma 6.2. We set ξ̃n+1 = ξn+1−xn+1− t1

k+1 |x1,n|
k−

t2
k+1 |ξ1,n|

k, and we recall that ξn+1 − xn+1 ≤ t−τ
2(k+1)

(
|x1,n|k + |ξ1,n|k

)
+ nk/2

8k+1(k+1)
(t− τ)1+k/2.

Thus

t− τ

3
< (t− t1)− (τ + t2) < t− τ,

k − 1

k + 1
(ξn+1 − xn+1) ≤ ξ̃n+1 ≤

nk/2

8k+1(k + 1)
(t− τ)1+k/2.

(6.12)
Then, from Lemma 6.2 we get

u (γ2(0)) ≤ exp

(
C

(
(t− t1 − t2 − τ)1+2/k

(ξ̃n+1)2/k
+ 1

))
u
(
γ(t1)

)
≤ exp

(
C

((
k + 1

k − 1

)2/k (t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u
(
γ(t1)

)
.

(6.13)
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From inequalities (6.11) and (6.13) it follows that

u(ξ, τ) ≤ exp

(
C ′
(
|x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+

|x1,n|2 + |ξ1,n|2

t− τ
+ 1

))
u(x, t),

for some positive constant C ′ only depending on C and on k. Note that the last term in the
above expression is bounded by the first one. Indeed, the inequality

|x1,n|2 + |ξ1,n|2

t− τ
≤ 2

k + 2

|x1,n|k+2 + |ξ1,n|k+2

(t− τ)1+k/2
+

k

k + 2

combined with (6.12), gives

|x1,n|2 + |ξ1,n|2

t− τ
≤ 2

4k+1(k + 2)(k − 1)

|x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

k

k + 2
.

This concludes the proof of (ii) when x1,n ̸= 0, and ξ1,n ̸= 0.
If x1,n = 0, we simply omit the construction of γ1, and we rely on γ2 and on the application

of Lemma 6.2 in the interval [τ + t2, t]. Analogously, if ξ1,n = 0, we avoid the construction of
γ2. This concludes the proof. �

Proposition 6.4 Let L be the operator defined in (5.9) and let k be a positive integer. Let
u : Rn+1×]T1, T2[→ R be a non-negative solution to L u = 0, and let t, τ ∈ R be such that
T1 < τ < t < T2, and t − τ ≤ 2(τ − T1). Then there exists a positive constant C1, only
depending on L , such that

i) if k is even, then for any x, ξ ∈ Rn+1 such that ξn+1−xn+1 ≥ 15k(t−τ)
∑n

j=1

(
xkj + ξkj

)
+

n
(
3
2

)k
(t− τ)1+k/2 we have

u(ξ, τ) ≤ exp

(
C1

(
|x1,n − ξ1,n|2

t− τ
+

+
(ξn+1 − xn+1 − 1

2k+4

∑n
j=1(x

k
j + ξkj )(t− τ))2/k

(t− τ)1+2/k
+ 1

))
u(x, t);

ii) if k is even, then for any x, ξ ∈ Rn+1 such that 0 < ξn+1−xn+1 ≤ t−τ
2(k+1)

∑n
j=1

(
xkj + ξkj

)
+

(t−τ)1+k/2

4k+1(k+1)
we have

u(ξ, τ) ≤ exp

(
C1

(
|x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u(x, t);

iii) if k is odd, we have

u(ξ, τ) ≤ exp

(
C1

(
|x1,n − ξ1,n|2

t− τ
+

+
|ξn+1 − xn+1 − 1

2k+4

∑n
j=1(x

k
j + ξkj )(t− τ)|2/k

(t− τ)1+2/k
+ 1

))
u(x, t).
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Proof. The proof of (i) and (ii) is analogous to that of Proposition 6.3. The unique modifi-
cation is due to the fact that here we have

xn+1

(
t−τ
2

)
− xn+1 =

∫ t−τ
4

0

n∑
j=1

(xj + sω̃j)
k ds+

∫ t−τ
4

0

n∑
j=1

(ξj − sω̂j)
k ds. (6.14)

instead of (6.5). From (6.6), by the same argument used in the proof of (6.7) and (6.8), we
obtain

t− τ

2k+4

n∑
j=1

(
xkj + ξkj

)
≤ xn+1

(
t−τ
2

)
−xn+1 ≤

t− τ

2
15k

n∑
j=1

(
|xj |k + |ξj |k

)
+2n

(
3
2

)k
(t−τ)k/2+1.

We omit the other details of the proof of (i) and (ii).

The proof of (iii) follows from the same argument used in the proof of (i). Note that, as
k is odd, the function

φ(b) = xn+1

(
t−τ
2

)
+ 2

∫ t−τ
4

0

n∑
j=1

(xj + b ωj)
k ds

defined for any b ∈ R is surjective, then in this case Lemma 6.1 is sufficient to conclude the
proof. �

Final derivation of the estimates

Proof of Theorem 2.1. It follows from the bounds proved in Sections 4.5 and 6. Consider
first equation (1.3).

The upper bound of (i) is given in (4.38). In order to prove the lower bound, we fix a
constant vector ω ∈ Rn, α ∈]0, 1[, and we set

x̃1,n = ξ1,n − α
√
t ω, x̃n+1 = ξn+1 −

∫ α2t

0

∣∣∣ξ1,n − s
α
√
t
ω
∣∣∣kds. (6.15)

According with Remark 5.13, we have

p(α2t, x̃, ξ) = Γ(x̃, α2t, ξ, 0) =
C

(α2t)1+
n+k
2

, C = Γ
(
ω,− |ω|k

k+1 , 1
)

(6.16)

For our purpose, we choose here ω = (1, . . . , 1) ∈ Rn, and α = 1/
√
2. Note that the constant

C is strictly positive, being ω ̸= 0. Also note that

0 < ξn+1 − x̃n+1 ≤ 2kα2
(
t|ξ1,n|k + αkt1+k/2|ω|k

)
. (6.17)

We then apply Proposition 6.3 (i), and we find

p(t, x, ξ) ≥ exp

(
− C1

(
|x1,n − x̃1,n|2

t
+(

x̃n+1 − xn+1 − t
2k+5

(
|x1,n|k + |x̃1,n|k

))2/k
t1+2/k

+ 1

))
p(t/2, x̃, ξ).
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The lower bound (i) thus follows from the inequalities |x̃1,n−ξ1,n| ≤
√
t/2 |ω| and ξn+1 > x̃n+1.

The upper bound of (ii) is equation (4.37), the lower bound is given in Lemma 4.11.
The upper bound of (iii) is given in (4.39). In order to prove the lower bound we rely

on Proposition 6.3 (ii). In order to satisfy its hypothesis, we choose α ∈]0, 1/
√
2] such that

ξn+1 − x̃n+1 ≤ 1
2(ξn+1 − xn+1). Note that

0 < ξn+1 − x̃n+1 ≤ 2kα2
(
t|x̃1,n|k + αkt1+k/2|ω|k

)
, (6.18)

then it is sufficient to choose α such that

α2t ≤ ξn+1 − xn+1

2k+2|x̃1,n|k
, (α

√
t)k+2 ≤ ξn+1 − xn+1

2k+2|ω|k
.

Using our assumption |ξn+1 − xn+1| ≤ Kt1+k/2 we find

1

α2t
≥
CK,k

t
max

(
|x̃1,n|k

|ξn+1 − xn+1|
k

k+2

, 1

)
for some positive constant CK,k depending on K and k. Then (6.16) gives

p(α2t, x̃, ξ) ≥
C̃K,k

t
n+k+2

2

(
1 +

|x̃1,n|k+2

|ξn+1 − xn+1|

) (k+2)(n+k+2)
2k

With this choice of α Proposition 6.3 (ii) then gives

p(t, x, ξ) ≥
C̃K,k

t
n+k+2

2

(
1 +

|x̃1,n|k+2

|ξn+1 − xn+1|

) (k+2)(n+k+2)
2k

·

exp

(
− C1

(
|x1,n|k+2 + |x̃1,n|k+2

x̃n+1 − xn+1
+

((1− α2)t)1+2/k

(x̃n+1 − xn+1)2/k
+ 1

))
and our lower bound follows from the inequalities t/2 ≤ (1 − α2)t ≤ t, 1/2(ξn+1 − xn+1) ≤
x̃n+1 − xn+1 ≤ ξn+1 − xn+1 and |x̃1,n − ξ1,n| ≤

√
t/2 |ω|.

When considering equation (1.4), the lower bounds for points (i) and (iii) directly follow
from 6.4. The proof of the remaining bounds can be done by the same arguments used for
equation (1.3). �

Remark 6.5 We can assume by symmetry that w.l.o.g. |ξ1,n| ≥ |x1,n|. In this case, observe
from equation (6.17) that if |ξ1,n| ≥ Kt1/2 for K large enough, then we can derive from Lemma
4.11 that the Gaussian diagonal regime holds for the lower bound. From the proof leading to
(4.38), this means that the non-exponential estimates in case i) could be alternatively rewritten

changing the t−{n+k
2

+1} term into

t−n/2t−3/2({|x1,n|k−1 + |ξ1,n|k−1} ∨ t
k−1
2 )−1, (6.19)

that emphasizes the regime transition depending on the magnitude of the non-degenerate com-
ponents w.r.t. to their characteristic time-scale. From the above computations, the expression
in (6.19) can also substitute the non-exponential term in case iii).
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