The extraction of the Point Spread Function (PSF) from astronomical data is an important issue for data reduction packages for stellar photometry that use PSF fitting. High resolution Adaptive Optics images are characterized by a highly structured PSF that cannot be represented by any simple analytical model. Even a numerical PSF extracted from the frame can be affected by the field crowding effects. In this paper we use blind deconvolution in order to find an approximation of both the unknown object and the unknown PSF. In particular we adopt an iterative inexact alternating minimization method where each iteration (that we call outer iteration) consists in alternating an update of the object and of the PSF by means of fixed numbers of (inner) iterations of the Scaled Gradient Projection (SGP) method. The use of SGP allows the introduction of different constraints on the object and on the PSF. In particular, we introduce a constraint on the PSF which is an upper bound derived from the Strehl ratio (SR), to be provided together with the input data. In this contribution we show the photometric error dependence on the crowding, having simulated images generated with synthetic PSFs available from the Phase-A study of the E-ELT MCAO system (MAORY) and different crowding conditions.
Point spread function extraction in crowded fields using blind deconvolution / L., Schreiber; A., La Camera; Prato, Marco; E., Diolaiti. - ELETTRONICO. - (2013). (Intervento presentato al convegno Third Adaptive Optics for Extremely Large Telescopes (AO4ELT) Conference tenutosi a Firenze nel 26-31 maggio 2013) [10.12839/AO4ELT3.13358].
Point spread function extraction in crowded fields using blind deconvolution
PRATO, Marco;
2013
Abstract
The extraction of the Point Spread Function (PSF) from astronomical data is an important issue for data reduction packages for stellar photometry that use PSF fitting. High resolution Adaptive Optics images are characterized by a highly structured PSF that cannot be represented by any simple analytical model. Even a numerical PSF extracted from the frame can be affected by the field crowding effects. In this paper we use blind deconvolution in order to find an approximation of both the unknown object and the unknown PSF. In particular we adopt an iterative inexact alternating minimization method where each iteration (that we call outer iteration) consists in alternating an update of the object and of the PSF by means of fixed numbers of (inner) iterations of the Scaled Gradient Projection (SGP) method. The use of SGP allows the introduction of different constraints on the object and on the PSF. In particular, we introduce a constraint on the PSF which is an upper bound derived from the Strehl ratio (SR), to be provided together with the input data. In this contribution we show the photometric error dependence on the crowding, having simulated images generated with synthetic PSFs available from the Phase-A study of the E-ELT MCAO system (MAORY) and different crowding conditions.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris