In order to efficiently detect four drug precursor molecules in presence of interfering species and background air, using a EC-QCLPAS sensor operating in the mid-infrared region, a complex strategy of spectral response simulation has been developed. In this context, spectra of gases from literature databases have been collected, denoised by means of the Wavelet Transform and mixed together according to a concentration matrix, which was specifically designed to represent a comprehensive combination of possible realistic cases. To scale database spectra to the appropriate concentration levels, an ad-hoc algorithm based on a sigmoidal transfer function has been used. In this way the baseline shape and intensity is preserved. Afterwards, a preliminary wavelength selection has been carried out to exclude noisy regions. The optimal range has finally been defined by maximizing the classification efficiency for all the target gases by means of Partial Least Squares-Discriminant Analysis.

A Feature Selection Strategy for the Development of a New Drug Sensing SystemSensors / Ulrici, Alessandro; Calderisi, Marco; Seeber, Renato; J., Uotila; A., Secchi; A. M., Fiorello; M., Dispenza. - STAMPA. - 162:(2014), pp. 183-187. (Intervento presentato al convegno 1st National Conference on Sensors tenutosi a Rome, ita nel 15-17 Febbraio 2012) [10.1007/978-1-4614-3860-1_32].

A Feature Selection Strategy for the Development of a New Drug Sensing SystemSensors

ULRICI, Alessandro
;
CALDERISI, MARCO;SEEBER, Renato;
2014

Abstract

In order to efficiently detect four drug precursor molecules in presence of interfering species and background air, using a EC-QCLPAS sensor operating in the mid-infrared region, a complex strategy of spectral response simulation has been developed. In this context, spectra of gases from literature databases have been collected, denoised by means of the Wavelet Transform and mixed together according to a concentration matrix, which was specifically designed to represent a comprehensive combination of possible realistic cases. To scale database spectra to the appropriate concentration levels, an ad-hoc algorithm based on a sigmoidal transfer function has been used. In this way the baseline shape and intensity is preserved. Afterwards, a preliminary wavelength selection has been carried out to exclude noisy regions. The optimal range has finally been defined by maximizing the classification efficiency for all the target gases by means of Partial Least Squares-Discriminant Analysis.
2014
1st National Conference on Sensors
Rome, ita
15-17 Febbraio 2012
162
183
187
Ulrici, Alessandro; Calderisi, Marco; Seeber, Renato; J., Uotila; A., Secchi; A. M., Fiorello; M., Dispenza
A Feature Selection Strategy for the Development of a New Drug Sensing SystemSensors / Ulrici, Alessandro; Calderisi, Marco; Seeber, Renato; J., Uotila; A., Secchi; A. M., Fiorello; M., Dispenza. - STAMPA. - 162:(2014), pp. 183-187. (Intervento presentato al convegno 1st National Conference on Sensors tenutosi a Rome, ita nel 15-17 Febbraio 2012) [10.1007/978-1-4614-3860-1_32].
File in questo prodotto:
File Dimensione Formato  
Atti_CNS_Ulrici_P21.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 176.11 kB
Formato Adobe PDF
176.11 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/995116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact