Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp2) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling is antiferromagnetic and is influenced by the molecule structure, the adsorption geometry, and the stacking of graphene on the substrate. We show how the coupling can be tuned by the intercalation of a magnetic monolayer, such as Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp2 and graphene close to the Fermi level. Graphene plays the role of an electronic decoupling layer while allowing effective spin communication between molecule and substrate.
Graphene-mediated exchange coupling between a molecular spin and magnetic substrates / S., Marocchi; P., Ferriani; N. M., Caffrey; Manghi, Franca; S., Heinze; V., Bellini. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 88:14(2013), pp. 144407-1-144407-7. [10.1103/PhysRevB.88.144407]
Graphene-mediated exchange coupling between a molecular spin and magnetic substrates
MANGHI, Franca;
2013
Abstract
Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp2) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling is antiferromagnetic and is influenced by the molecule structure, the adsorption geometry, and the stacking of graphene on the substrate. We show how the coupling can be tuned by the intercalation of a magnetic monolayer, such as Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp2 and graphene close to the Fermi level. Graphene plays the role of an electronic decoupling layer while allowing effective spin communication between molecule and substrate.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.88.144407.pdf
Accesso riservato
Descrizione: articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris