Group detection in crowds will play a key role in future behavior analysis surveillance systems. In this work we build a new Structural SVM-based learning framework able to solve the group detection task by exploiting annotated video data to deduce a sociologically motivated distance measure founded on Hall's proxemics and Granger's causality. We improve over state-of-the-art results even in the most crowded test scenarios, while keeping the classification time affordable for quasi-real time applications. A new scoring scheme specifically designed for the group detection task is also proposed.

Structured learning for detection of social groups in crowd / Solera, Francesco; Calderara, Simone; Cucchiara, Rita. - ELETTRONICO. - 0:(2013), pp. 7-12. (Intervento presentato al convegno 10th IEEE International Conference on Advanced Video and Signal-Based Surveillance: AVSS 2013 tenutosi a Krakov (PL) nel August 27-30 2013) [10.1109/AVSS.2013.6636608].

Structured learning for detection of social groups in crowd

SOLERA, FRANCESCO;CALDERARA, Simone;CUCCHIARA, Rita
2013

Abstract

Group detection in crowds will play a key role in future behavior analysis surveillance systems. In this work we build a new Structural SVM-based learning framework able to solve the group detection task by exploiting annotated video data to deduce a sociologically motivated distance measure founded on Hall's proxemics and Granger's causality. We improve over state-of-the-art results even in the most crowded test scenarios, while keeping the classification time affordable for quasi-real time applications. A new scoring scheme specifically designed for the group detection task is also proposed.
2013
10th IEEE International Conference on Advanced Video and Signal-Based Surveillance: AVSS 2013
Krakov (PL)
August 27-30 2013
0
7
12
Solera, Francesco; Calderara, Simone; Cucchiara, Rita
Structured learning for detection of social groups in crowd / Solera, Francesco; Calderara, Simone; Cucchiara, Rita. - ELETTRONICO. - 0:(2013), pp. 7-12. (Intervento presentato al convegno 10th IEEE International Conference on Advanced Video and Signal-Based Surveillance: AVSS 2013 tenutosi a Krakov (PL) nel August 27-30 2013) [10.1109/AVSS.2013.6636608].
File in questo prodotto:
File Dimensione Formato  
AVSS_2013.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/992335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 24
social impact