In this paper, we propose a general approach for automatic segmentation, color-based retrieval and classification of garments in fashion store databases, exploiting shape and color information. The garment segmentation is automatically initialized by learning geometric constraints and shape cues, then it is performed by modeling both skin and accessory colors with Gaussian Mixture Models. For color similarity retrieval and classification, to adapt the color description to the users’ perception and the company marketing directives, a color histogram with an optimized binning strategy, learned on the given color classes, is introduced and combined with HOG features for garment classification. Experiments validating the proposed strategy, and a free-to-use dataset publicly available for scientific purposes, are finally detailed.
A complete system for garment segmentation and color classification / Manfredi, Marco; Grana, Costantino; Calderara, Simone; Cucchiara, Rita. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - STAMPA. - 25(2014), pp. 955-969.
Data di pubblicazione: | 2014 |
Titolo: | A complete system for garment segmentation and color classification |
Autore/i: | Manfredi, Marco; Grana, Costantino; Calderara, Simone; Cucchiara, Rita |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00138-013-0580-3 |
Rivista: | |
Volume: | 25 |
Pagina iniziale: | 955 |
Pagina finale: | 969 |
Codice identificativo ISI: | WOS:000334447600009 |
Codice identificativo Scopus: | 2-s2.0-84899949331 |
Citazione: | A complete system for garment segmentation and color classification / Manfredi, Marco; Grana, Costantino; Calderara, Simone; Cucchiara, Rita. - In: MACHINE VISION AND APPLICATIONS. - ISSN 0932-8092. - STAMPA. - 25(2014), pp. 955-969. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
2013MVAP_YOOX_revised.pdf | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris