We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.
Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph / Pierluigi, Contucci; Sander, Dommers; Giardina', Cristian; Shannon, Starr. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 323:2(2013), pp. 517-554. [10.1007/s00220-013-1778-y]
Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph
GIARDINA', Cristian;
2013
Abstract
We study the antiferromagnetic Potts model on the Poissonian Erdős-Rényi random graph. By identifying a suitable interpolation structure and an extended variational principle, together with a positive temperature second-moment analysis we prove the existence of a phase transition at a positive critical temperature. Upper and lower bounds on the temperature critical value are obtained from the stability analysis of the replica symmetric solution (recovered in the framework of Derrida-Ruelle probability cascades) and from an entropy positivity argument.File | Dimensione | Formato | |
---|---|---|---|
Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph.pdf
Accesso riservato
Tipologia:
Abstract
Dimensione
845.34 kB
Formato
Adobe PDF
|
845.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris