Cobalt-base alloys are generally used in applications that require wear, corrosion and heat resistance. In particular, Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy is adopted in the aerospace and medical field. These applications are characterized by low volumes and high personalization, so they could take advantage by the employment of additive technologies, such as Direct Metal Laser Sintering (DMLS). This technology still has limitations for the manufacture of small cavities, such as holes with diameters below 0.6mm and high aspect ratio, which require drilling of the additive manufactured part. Scope of this research is to investigate the effects of Electro-Dicharge Drilling (EDD) on surface and subsurface features of CoCrMo samples built by DMLS. High aspect ratio holes are produced with diameter of 0.6 mm and depth fifteen times higher. The attractiveness of ED machining for thin deep geometries stems from then absence of physical contact between tool and workpiece, which makes machining forces negligible and minimizes tool deformation. Micro features can be produced with a high accuracy irrespective of the material hardness and strength. Material Removal Rate (MRR), Electrode Wear (EW) and surface roughness are investigated versus the process parameters. Results are supported by the study of material removal mechanisms and surface morphology in the microscale, to account for the macroscopic trends.

Electro-Discharge Drilling on DMLS parts in Co-Cr-Mo alloy / Gatto, Andrea; Bassoli, Elena; Denti, Lucia; E., Atzeni; L., Iuliano; G., Marchiandi; P., Minetola; A., Salmi; F., Calignano. - STAMPA. - -:(2014), pp. ---. (Intervento presentato al convegno VRAP 2013 tenutosi a Leiria (PT) nel October 1 - 5 2013) [10.1201/b15961].

Electro-Discharge Drilling on DMLS parts in Co-Cr-Mo alloy

GATTO, Andrea;BASSOLI, Elena;DENTI, Lucia;
2014

Abstract

Cobalt-base alloys are generally used in applications that require wear, corrosion and heat resistance. In particular, Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy is adopted in the aerospace and medical field. These applications are characterized by low volumes and high personalization, so they could take advantage by the employment of additive technologies, such as Direct Metal Laser Sintering (DMLS). This technology still has limitations for the manufacture of small cavities, such as holes with diameters below 0.6mm and high aspect ratio, which require drilling of the additive manufactured part. Scope of this research is to investigate the effects of Electro-Dicharge Drilling (EDD) on surface and subsurface features of CoCrMo samples built by DMLS. High aspect ratio holes are produced with diameter of 0.6 mm and depth fifteen times higher. The attractiveness of ED machining for thin deep geometries stems from then absence of physical contact between tool and workpiece, which makes machining forces negligible and minimizes tool deformation. Micro features can be produced with a high accuracy irrespective of the material hardness and strength. Material Removal Rate (MRR), Electrode Wear (EW) and surface roughness are investigated versus the process parameters. Results are supported by the study of material removal mechanisms and surface morphology in the microscale, to account for the macroscopic trends.
2014
16-set-2013
VRAP 2013
Leiria (PT)
October 1 - 5 2013
-
-
-
Gatto, Andrea; Bassoli, Elena; Denti, Lucia; E., Atzeni; L., Iuliano; G., Marchiandi; P., Minetola; A., Salmi; F., Calignano
Electro-Discharge Drilling on DMLS parts in Co-Cr-Mo alloy / Gatto, Andrea; Bassoli, Elena; Denti, Lucia; E., Atzeni; L., Iuliano; G., Marchiandi; P., Minetola; A., Salmi; F., Calignano. - STAMPA. - -:(2014), pp. ---. (Intervento presentato al convegno VRAP 2013 tenutosi a Leiria (PT) nel October 1 - 5 2013) [10.1201/b15961].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/983364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact