Glassy carbon (GC) surfaces are functionalized exploiting the electrochemical reduction of asymmetric iodonium salts of the general formula [4-Zsingle bondC6H4single bondI+single bondCtriple bond; length of mdashC(CH2)4Cl, Z = NO2, Br, F, H, or CH3]. The range of Z groups was selected aiming to examine the Carylsingle bondI bond energy as a function of the “electron withdrawing/electron donating” ability of the Z-group, with the ultimate purpose of controlling the alkynyl/aryl grafting ratio. The electroreduction mechanism and the characteristics of the grafted surface are studied by means of cyclic voltammetry and X-ray photoelectron spectroscopy. It is shown that the alkynyl/aryl grafting ratio decreases with the increasing electron withdrawing nature of Z, which induces a weakening of the Carylsingle bondI bond. Ab initio DFT vertical electron affinities (EAv) allowed to rationalize the electroreduction potentials of both the bulk and surface functionalised redox couples. Moreover, the alkynyl/aryl grafting ratio is assessed, at a molecular level, on the basis of ab initio DFT potential energy surfaces.
Electrochemically assisted grafting of asymmetric alkynyl(aryl)iodonium salts on glassy carbon with focus on the alkynyl/aryl grafting ratio / Florini, Nicola; M., Michelazzi; Parenti, Francesca; Mucci, Adele; Sola, Marco; C., Baratti; De Renzi, Valentina; K., Daasbjerg; S. U., Pedersen; Fontanesi, Claudio. - In: JOURNAL OF ELECTROANALYTICAL CHEMISTRY. - ISSN 1572-6657. - STAMPA. - 710:(2013), pp. 41-47. [10.1016/j.jelechem.2013.01.023]
Electrochemically assisted grafting of asymmetric alkynyl(aryl)iodonium salts on glassy carbon with focus on the alkynyl/aryl grafting ratio
FLORINI, Nicola;PARENTI, Francesca;MUCCI, Adele;SOLA, Marco;DE RENZI, Valentina;FONTANESI, Claudio
2013
Abstract
Glassy carbon (GC) surfaces are functionalized exploiting the electrochemical reduction of asymmetric iodonium salts of the general formula [4-Zsingle bondC6H4single bondI+single bondCtriple bond; length of mdashC(CH2)4Cl, Z = NO2, Br, F, H, or CH3]. The range of Z groups was selected aiming to examine the Carylsingle bondI bond energy as a function of the “electron withdrawing/electron donating” ability of the Z-group, with the ultimate purpose of controlling the alkynyl/aryl grafting ratio. The electroreduction mechanism and the characteristics of the grafted surface are studied by means of cyclic voltammetry and X-ray photoelectron spectroscopy. It is shown that the alkynyl/aryl grafting ratio decreases with the increasing electron withdrawing nature of Z, which induces a weakening of the Carylsingle bondI bond. Ab initio DFT vertical electron affinities (EAv) allowed to rationalize the electroreduction potentials of both the bulk and surface functionalised redox couples. Moreover, the alkynyl/aryl grafting ratio is assessed, at a molecular level, on the basis of ab initio DFT potential energy surfaces.File | Dimensione | Formato | |
---|---|---|---|
JEC201341-47.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
524.21 kB
Formato
Adobe PDF
|
524.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris