Rolling Elements Bearing (REB) condition monitoring is mainly based on the analysis of acceleration (vibration) signal in the load direction. This is one of the three components of the acceleration vector in 3D space: the main idea of this paper is the recovery of additional fault information from all the three acceleration vector components by combining them to obtain the modulus of the spatial acceleration (SAM) vector. The REB diagnostic performances of the SAM are investigated and compared to the load direction vibration by means of two rough estimators of the ‘‘Signal-to-Noise’’ ratio (SNR) and the Spectral Kurtosis. The SAM provides a higher SNR than the single load direction. Finally, Spectral Kurtosis driven Envelope analysis is performed for further comparison of the two signals: its results highlight that demodulation of the SAM isn’t strictly necessary to extract the fault features.
Spatial acceleration modulus for rolling elements bearing diagnostics / Cocconcelli, Marco; Rubini, Riccardo; Cotogno, Michele. - STAMPA. - 5:(2014), pp. 587-595. (Intervento presentato al convegno The Third International Congress in Condition Monitoring of Machinery in Non-Stationary Operations tenutosi a Ferrara nel 8-10 maggio 2013) [10.1007/978-3-642-39348-8_51].
Spatial acceleration modulus for rolling elements bearing diagnostics
COCCONCELLI, Marco;RUBINI, Riccardo;COTOGNO, MICHELE
2014
Abstract
Rolling Elements Bearing (REB) condition monitoring is mainly based on the analysis of acceleration (vibration) signal in the load direction. This is one of the three components of the acceleration vector in 3D space: the main idea of this paper is the recovery of additional fault information from all the three acceleration vector components by combining them to obtain the modulus of the spatial acceleration (SAM) vector. The REB diagnostic performances of the SAM are investigated and compared to the load direction vibration by means of two rough estimators of the ‘‘Signal-to-Noise’’ ratio (SNR) and the Spectral Kurtosis. The SAM provides a higher SNR than the single load direction. Finally, Spectral Kurtosis driven Envelope analysis is performed for further comparison of the two signals: its results highlight that demodulation of the SAM isn’t strictly necessary to extract the fault features.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris